二通气阀的工作原理

控制气路的电磁阀几乎没有二通,只有控制液路的电磁阀有二通,这里说的是气阀二通。

电磁阀故障分析及排除

这个符号表示常开(常断)的二通单向气阀,平时不通正压的时候是不导通的,那么通正压后液体流动的方向如何呢?气路标定原则是P口流向A口,也就是进气(液)口流向工作口(出液口),这个流动方向在其他的检验设备里面的管路图中,会在管路上进行方向标记,而在SYSMEX的管路图中,会阀的一侧进行标记。

电磁阀故障分析及排除

上图是MV17的示意图,右侧的流动方向表示从下往上流动,左侧则表示是一个常开(常断)的二通单向气阀,正压导通的时候,液体或者气体从下往上经过MV17到达W.C.也就是废液瓶。

电磁阀故障分析及排除

上图表示常闭(常通)的二通单向气阀,平时不通正压的时候是导通的,通正压后反而关闭。流动方向则跟上面一样给出。

电磁阀故障分析及排除

上图是双向二通气阀,流动方向是双箭头,表示来回流动。

气阀的工作原理

气阀是内部是带有弹簧的移动杆,移动杆的一端或者两端配有橡胶帽(皮碗),如果是常开阀,那么这个皮碗在平时(不通正压的时候)是被弹簧作用而顶住出气口的,也就不导通,从下图可以看出1、2口是不通的,移动杆皮碗被正压作用后,会顶压弹簧向反方向运动,1、2口也就导通,导通时间完全取决于正压得保持时间。

电磁阀故障分析及排除

下图是通正压的示意图:

电磁阀故障分析及排除

电磁阀的动作原理与此相仿,只不过移动杆的动作是通过电磁线圈产生的磁力来完成的。如果正压从弹簧处进入,那么皮碗就会堵住出气口,也就是断开,其实,有时候根本不需要正压得介入,因为弹簧本身就会完成这个工作。但有很多设计是为了保险,防止弹簧被卡住,就需要正压保持,这样,也就是在关闭状态下,弹簧处也有正压。

如果在蓝色箭头处施加正压,则由于两个密封圈的作用,正压直接向弹簧施压,压迫弹簧从而打开出气口,阀就导通了。

下面来说三通,无论气阀还是电磁阀,三通的原理都一样,只不过气阀是通过正压而电磁阀是通过电磁线圈来推动的。

电磁阀故障分析及排除

常断形式,表示不通电或者正压的时候,工作口A与排气口R导通,流动方向是A到R。

常通形式,表示不通电或者正压的时候,进气口P与工作口A导通,流动方向是P到A 。

通断形式,表示流动方向不固定,公共端A不同电或者正压的时候与R口导通,通电或者正压的时候与P口导通,动作示意如下:

通电或者通正压:

电磁阀故障分析及排除

2和1口导通

不通电或者不通正压:

电磁阀故障分析及排除

2和3口导通。

下面说的是三通,是采用了两个独立的腔体来完成,如下图

电磁阀故障分析及排除

这是一个电磁阀三通的示意图,在这里上下两个部分可不是两个腔体的意思,而是分别表示通电和不同电的状态,上面部分是表示通电后流动的方向和端口,下面部分是表示不通电的时候流动方向和端口,值得注意的是,安装管路流程图的绘制原则,管路连接到阀体上,这种双状态的画法是把管路连接画在不同电的情况下的,也就是说画在下部。

下图是一个上下排列和左右排列的示意图,1表示通电状态下的流动方向和端口,2表示不通电状态下的流动方向和端口。

电磁阀故障分析及排除

下图是一个电磁阀SV17的示意图

电磁阀故障分析及排除

不通电的时候,电磁阀SV17的公共端与未引出端导通,由于没有引出,也就没有任何压力介入,因此,公共端相当于悬空。在图中也就是下面的部分连接有管路的部分。当电磁阀通电,公共端与原始正压连接,方向改变为原始正压到公共端,也就是上半部分的示意。

电磁阀和气控阀结合,如下图:

电磁阀故障分析及排除

电磁阀为三通,气阀为二通,当电磁阀SV17不通电的时候,电磁阀公共端与未引出端导通,公共端无任何压力,而气阀MV17没有正压的作用,也就不导通。当电磁阀SV17通电,公共端与原始正压连接,原始正压通过SV17加载到MV17,MV17获得了正压之后,皮碗反方向运动,气阀打开,液体通过MV17在负压的作用下进入废液瓶。这是一个最简单的电磁阀驱动气阀的应用,很多人会说这简直是多此一举,一个液体介质的电磁阀不就解决了吗?干吗非要两个阀来解决呢?其实,在很多场合下,特别是防爆防燃的场合下,需要这么解决,大概是速度和可靠性方面考虑多些了。