人工智能:支撑智能制造转型

推进智能制造转型的根本原因在于:机器功能表现不遂人愿,人很难掌控机器的全部状态情况。机器不容易改变和提升功能,任何的功能更改都需要重新开发某些甚至全部零部件;机器运行状态不为人知,且不说远程监控,就是人站在机器前面,也未必知道哪个零部件正常与否,还有多长时间需要更换;机器不灵活,例如无法像人手一样灵巧地装配零件;机器不认人,无法判断谁是合法的操作者并给以相应的配合;机器不会自主发声,告诉所有者或其他人,”我已空闲,请给我安排工作”等等。

在机器不智能的时代,只能靠人的智能来弥补。但是,人的体力有限易疲劳,人的智力和技能有差异,人的心理状态不可控,更重要的是,很多问题限于人的辨别力是无法解决的,例如机器中的一个关键零部件现在复合受力是多大?环境的振动是否会引发加工质量问题?车间中的粉尘状态何时会爆炸等等。

因此,人们一直期望在制造活动中能够有某种人体以外的”智能”要素的参与,无论是类似人还是其它生物的智能要素,加入到机器、生产环境或者生产的流程之中,使得整个制造活动可以满足这样的需求:所有的状态信息都能实时获取和快速响应,所有的决策都恰当且及时,所有的产品特征变化(个性化需求)都能充分满足,所有的产品都是高质量高附加值的,所有的制造过程都是高效安全的,所有的设备维护都是主动、预测式的,所有的企业运营都是高利润、低成本、绿色环保的等等。

作为制造业智能制造转型的关键使能技术,人工智能的发展在为智能制造赋能的同时,也为机器从”劳动工具”向”劳动伙伴”的角色演进提供新路径。

当前,制造企业从原材料采购、生产制造,到产品销售与流通,所有经营生产过程正越来越趋于数据化和智能化。数据的不断累积以及数据算法和模型的不断发展成熟,为人工智能融入到制造业提供了机会,进而促进企业从传统生产向智能生产转型。

企业可以通过遍布车间的传感器和智能芯片,实现对生产过程中的全链路数据的处理和分析,进而提升生产效率、库存周转率、设备利用率等关键指标。在销售层面,通过对海量的交易数据进行挖掘、计算和分析,人工智能可以为企业制定自动化和智能化的生产计划;在生产层面,通过对产品数据、生产设备数据的采集和分析,人工智能实现对生产设备和产品质量的智能化诊断,提高产品良品率;在流通层面,通过产品上部署的传感器及时采集产品状态数据,为企业的生产过程提供决策支撑,同时也可以提供预测性的维修维护服务。

人工智能大师西蒙曾说过:”学习就是系统在不断重复的工作中对本身能力的增强或者改进,使得系统在下一次执行同样任务或类似任务时,会比现在做得更好或效率更高。”机器学习是人工智能应用的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。现有的计算机系统和人工智能系统至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。对机器学习的讨论和研究,必将促使人工智能和整个科学技术的进一步发展。