智能制造涉及的若干概念及相互关系

智能制造理论中涉及到的概念太多。每次给人讲的时候,我都感到头疼。刚才我把概念间的关系粗粗地整理了一下,希望有个相对完整的描述。整理的原则围绕着应用:怎么用、谁来用、什么时候用、什么场景下用。其中,考虑了三种可行性:技术可行性、经济可行性、现实可行性。所谓现实可行性,主要考虑到不能把人的能力考虑得太牛。

我们经常从不同的角度提到智能制造,这实在让人头疼。

我常把智能制造与转型升级联系在一起。但对一个企业来说,智能制造常常指的是技术层面的问题,转型升级是企业战略方面的事情。从理论上说,转型升级就是对组织、流程、业务等要素的重构。

我们有时候把智能制造简单地定义为“ICT技术在工业领域的深度应用”。所谓“深度应用”,主要就是伴随转型升级和重构。而不是单单是服务于现有业务。强调这些的背景是:基础技术提供的新机会在这里。这也是从技术手段角度定义智能制造。还可以从企业的外部表现或结果、目标来定义,比如提升企业的快速响应能力。从业务角度看,提升快速响应能力的手段包括“协同、共享、重用”。其中,“共享、重用”针对的是资源的准备,而协同则是资源的使用。

从业务角度看,互联网的作用是提高协同能力;从经济学角度看,是提高了资源配置能力。故而,互联网能够促进“协同、共享、重用”。按照熊彼特的观点,创新就是企业家的资源配置。所以,智能制造是企业家主导的、与技术密切相关的创新活动——表现为“转型升级”这种战略活动。其中,“共享、重用”涉及到资源的使用权限,需要有业务或者商业模式的创新来保证、需要由企业家推动。而“信息集成”则是从IT技术角度为“协同”奠定基础。当然,“协同”本身属于业务范畴,IT如何集成则是要符合OT技术的要求。特别地,协同过程先要规范成“业务流程”,才能标准化,进而实现智能化。事实上,流程本身就是一种知识。

协同的结果是快速响应。从实现的原理角度看,则表现为智能原理的应用。这样,“智能制造”才与“智能”这个概念挂上钩。“智能”最基本的三个要素是“感知、决策、执行”的统一;也就是维纳当年提出的观点。这是人工智能的三个学派之一。但长期以来,这不是主流学派。因为主流学派关注的是复杂决策相关的方法和理论。互联网提升了“感知和执行”能力,故而促进了智能制造。从某种意义上说,智能制造的思想,可以追溯到维纳、与自动化是同源的。但是,现在的条件与过去差别大了。在互联网的背景下,这个理论再次彰显生命力。

智能制造是决策革命。

通过“共享和重用”,互联网帮助人们对更多的资源进行配置。配置过程就是决策过程。这使得资源配置优化的空间增大了,故而价值性增强。与此同时,优化配置的难度也因此而增大。故而,人们往往需要机器帮助人来配置资源。机器帮助人类决策,意味着人们控制复杂问题的能力增强了。这就会释放出工业创新的空间。比如“流水线上的个性化定制”,这就是工业4.0。而工业4.0又会带动数字化设计等一系列技术的进步,如数字化设计。

决策需要知识。这种知识可以来源于人脑:用人脑的知识操作Cyber空间、把人脑的知识(逻辑)直接写成机器代码、采用大数据记录的成功案例、让机器自己学习知识。总之,知识的来源或者使用方式在互联网、大数据的条件下发生了变化,有了更多的选项。其中,学术界指的“人工智能”侧重决策,而“新一代人工智能”侧重机器学习、尤其是深度学习——这种学习特别适合那些不便编码的感性知识。

互联网能够带动大数据,大数据促进决策智能技术和人工智能,智能化彰显大数据和互联网的价值;进而促进大数据和互联网的应用。

我们一直强调,智能制造要关注人机关系。换句话说,强调利用人的知识、弥补人的不足。这是从实现手段上说的。现实中,只有这样做有技术可行性。潜台词是反对过度强调机器学习、机器决策。我们反对把智能制造理解为“机器换人”,原因是这约束了人们的视野、丢掉很多机会、还常常不具备经济性。

智能制造的瓶颈往往是经济可行性。经济可行性包括效益和成本两个部分。前面说的资源配置,是效益的来源之一。效益从何而来?在我看来,中长期是转型升级带来的效益,短期内是管理水平提升带来的效益。

智能制造可以显著提升管理水平。互联网可以实现“扁平化”、“远程化”;大数据实现“透明化”、智能算法让人避免淹没在大数据的海洋中。由于历史的原因,智能制造的机会往往在于管理与控制的融合;或者说“信息化”与“自动化”的“两化融合”。所谓的“历史原因”,就是指的这方面的机会比较多。

从管理入手,就要找到管理中的问题。这时候,精益管理、6西格玛、PDCA等方法就有用了。这些方法,让我们先从OT角度发现价值,然后再从IT角度推进智能化、让价值落袋。这也是从技术经济可行性角度考虑的。所谓标准化、流程化、精益化是智能化的基础,就是这个意思。

智能制造的另外一部分价值来源与成本的降低:“共享和重用”让成本降低;大数据让知识获取的成本降低;工业互联网平台让管理和持续改进的成本降低。工业互联网平台如何让持续改进的成本降低的?工业APP和数字孪生的思想解决了这个问题。

智能制造的定义及实现智能制造的意义

智能制造是什么

?

国内对“智能制造”的定义在工业和信息化部公布的“2015年智能制造试点示范专项行动”中,智能制造定义为基于新一代信息技术,贯穿设计、生产、管理、服务等制造活动各个环节,具有信息深度自感知、智慧优化自决策、精准控制自执行等功能的先进制造过程、系统与模式的总称。具有以智能工厂为载体,以关键制造环节智能化为核心,以端到端数据流为基础、以网络互联为支撑等特征,实现该智能制造可以缩短产品研制周期、降低资源能源消耗、降低运营成本、提高生产效率、提升产品质量。

?

?

?

再看美国和德国

?

美国“智能制造创新研究院”对智能制造的定义是:智能制造是先进传感、仪器、监测、控制和过程优化的技术和实践的组合,它们将信息和通信技术与制造环境融合在一起,实现工厂和企业中能量、生产率、成本的实时管理。

?

从智能制造创新研究部门对智能制造给出的定义和智能制造要实现的目标来看,传感技术、测试技术、信息技术、数控技术、数据库技术、数据采集与处理技术、互联网技术、人工智能技术、生产管理等与产品生产全生命周期相关的先进技术均是智能制造的技术内涵。智能制造以智能工厂的形式呈现。

?

德国曾经在汉诺威工业博览会上提出“工业4.0”战略。“工业4.0”的内涵就是数字化、智能化、人性化、绿色化,产品的大批量生产已经不能满足客户个性化订制的需求,要想使单件小批量生产能够达到大批量生产同样的效率和成本,需要构建可以生产高精密、高质量、个性化智能产品的智能工厂。

?

?

工业4.0的另一个内涵是分散网络化和信息物理的深度融合,由集中式控制向分散式增强型控制的基本模式转变。目标是建立一个高度灵活的个性化和数字化的产品与服务的生产模式。

?

智能制造五大关键技术

?

1.识别技术

2.实时定位系统

3.信息物理融合系统

4.网络安全技术

5.系统协同技术

?

实现智能制造的意义

?

第一,对现有的制造业的提升,包括缩短开发周期、降低成本、提升效率等。采用虚拟制造技术可以在产品设计阶段就模拟出该产品的整个生命周期,从而更有效,更经济、更灵活的组织生产,实现了产品开发周期最短,产品成本最低,产品质量最优,生产效率最高的保证。

?

第二,智能制造将会推动制造业发展出全新的制造模式,包括柔性制造、生物制造、绿色制造、分形制造等。柔性制造追求的是定制化,这种以消费者为导向的,以需定产的方式对立的是传统大规模量产的生产模式。

?

第三,通过智能制造的推进,将会有石油石化智能成套设备、冶金智能成套设备、自动化物流成套设备、智能化食品制造生产线、智能化纺织成套装备、智能化印刷装备等一大批智能制造装备形成产业,加快这些产业的发展,加速普及市场应用,就能够形成一个个新的经济增长点。

文章来源于网络

5G下的智能制造:智能工厂自动化新模式

一、5G技术场景支撑智能制造

作为新一代移动通信技术,5G技术切合了传统制造企业智能制造转型对无线网络的应用需求,能满足工业环境下设备互联和远程交互应用需求。在物联网、工业自动化控制、物流追踪、工业AR、云化机器人等工业应用领域,5G技术起着支撑作用。

1. 物联网:随着工厂智能化转型的推进,物联网作为连接人、机器和设备的关键支撑技术正受到企业的高度关注。这种需求在推动物联网应用落地的同时,也极大的刺激了5G技术的发展。

2. 工业自动化控制:这是制造工厂中最基础的应用,核心是闭环控制系统。5G可提供极低时延长、高可靠,海量连接的网络,使得闭环控制应用通过无线网络连接成为可能。

3. 物流追踪:从仓库管理到物流配送均需要广覆盖、深覆盖、低功耗、大连接、低成本的连接技术。此外,虚拟工厂的端到端整合跨越产品的整个生命周期,要连接分布广泛的已售出的商品,也需要低功耗、低成本和广覆盖的网络,企业内部或企业之间的横向集成也需要无所不在的网络,5G网络能很好的满足这类需求。

?
4. 工业AR:在智能工厂生产过程中,人发挥更重要的作用。由于未来工厂具有高度的灵活性和多功能性,这对工厂车间工作人员有更高的要求。为快速满足新任务和生产活动的需求,增强现实AR将发挥很关键作用,在智能制造过程中可用于如下场景:如:监控流程和生产流程。生产任务分步指引,例如手动装配过程指导;远程专家业务支撑,例如远程维护。在这些应用中,辅助AR设施需要最大程度具备灵活性和轻便性,以便维护工作高效开展。5G

5. 云化机器人:在智能制造生产场景中,需要机器人有自组织和协同的能力来满足柔性生产,这就带来了机器人对云化的需求。5G网络是云化机器人理想的通信网络,是使能云化机器人的关键。

?

总结:5G技术已经成为支撑智能制造转型的关键使能技术,能将分布广泛、零散的人、机器和设备全部连接起来,构建统一的互联网络。5G技术的发展可以帮助制造企业摆脱以往无线网络技术较为混乱的应用状态,这对于推动工业互联网的实施以及智能制造的深化转型有着积极的意义。

?

二、智能制造的核心是智能工厂

信息化革命愈演愈烈,机器设备、人和产品等制造元素不再是独立的个体,它们通过工业物联网紧密联系在一起,实现更协调和高效的制造系统。

?

当前制造业的转型可以看作是自动化升级和信息技术的融合提升,这不仅仅是自动化和机器换人,而且工厂能实现自主化决策,灵活生产出多样化的产品,并能快速应对更多的市场变化。

?

人工智能和制造系统的结合将是必然的,利用机器学习、模式识别、认知分析等算法模型,可以提升工厂控制管理系统的能力,实现所谓的智能制造,才能使企业在今天竞争激烈的环境获得更好的优势。

?

智能制造过程主要围绕着智能工厂展开,而人工智能在智能工厂中发挥着重要的作用。物联网将所有的机器设备连接在一起,例如控制器、传感器、执行器的联网,然后,AI就可以分析传感器上传的数据,这就是智能制造的核心。

?

随着工业物联网的应用发展,网络和实体系统将紧密联系在一起,也就是物联网将生产现场的处理器、传感器连接起来,使得机器人之间可以进行通信,可以互相沟通,而机器和人的工作将不再会严格分工,未来制造系统把人和机器融合在一起。

?

数字双胞胎是重要的角色,智能制造的整个流程都有一个数字孪生模型,系统里包括了现实世界的任何东西,可以是应用或者操作指南手册等。

?

此外,智能制造系统里还有人机交互,即人和机器人之间的互动。还有用人工智能驱动、优化产品和流程等。工厂需要做一些预测性维护或者是预测机器的能耗等等,越来越多的这些功能都可以在智能工厂里实现。

?

?

三、5G时代智能工厂前景展望

?

从2016年到2018年,我国的5G基础研发测试分为三个阶段。第一阶段是5G关联技术试验,第二阶段是5G技术方案验证,第三阶段是5G的系统验证。

?

我国于2016年1月启动了5G技术试验,为保证实验工作的顺利开展,IMT-2020(5G)推进组在北京怀柔规划建设了30个站的5G外场。在5G第二阶段试验完成之后,第三阶段试验将于2017年年底或2018年年初启动;预计5G第一个标准版本将于2018年6月完成,完整版本或将于2019年9月完成,并有望在2020年实现大规模商用。

?

面对第三阶段试验,为了做好配合,进一步丰富场景,我国未来计划在6个城市开展更多的试验,包括5G技术与智慧城市的核心规划结合,助力智慧城市的建设;借助5G的试验推动双创,以及在工业互联网、智能制造方面充分利用5G技术。

?

智能工厂是5G技术的重要应用场景之一。利用5G网络将生产设备无缝连接,并进一步打通设计、采购、仓储、物流等环节,使生产更加扁平化、定制化、智能化,从而构造一个面向未来的智能制造网络。在此,编者整理了业界对5G时代智能工厂的前景展望,让我们一同期待新时代的到来。

?

1、助推柔性制造 实现个性化生产

?

全球人口正在接近80亿,中产阶层消费群不断扩大,有望形成巨大市场,进而对消费布局产生影响。带有客户需求和产品“信息”功能的系统成为硬件产品销售新的核心,个性化定制成为潮流。为了满足全球各地不同市场对产品的多样化、个性化需求,生产企业内部需要更新现有的生产模式,基于柔性技术的生产模式成为趋势。国际生产工厂研究协会的定义为:柔性制造系统是一个自动化的生产制造系统,在最少人的干预下,能够生产任何范围的产品族,系统的柔性通常受到系统设计时所考虑的产品族的限制。柔性生产的到来,催生了对新技术的需求。

?

一方面,在企业工厂内,柔性生产对工业机器人的灵活移动性和差异化业务处理能力有很高要求。5G利用其自身无可比拟的独特优势,助力柔性化生产的大规模普及。5G网络进入工厂,在减少机器与机器之间线缆成本的同时,利用高可靠性网络的连续覆盖,使机器人在移动过程中活动区域不受限,按需到达各个地点,在各种场景中进行不间断工作以及工作内容的平滑切换。

?

5G网络也可使能各种具有差异化特征的业务需求。大型工厂中,不同生产场景对网络的服务质量要求不同。精度要求高的工序环节关键在于时延,关键性任务需要保证网络可靠性、大流量数据即时分析和处理的高速率。5G网络以其端到端的切片技术,同一个核心网中具有不同的服务质量,按需灵活调整。如设备状态信息的上报被设为最高的业务等级等。

?

另一方面,5G可构建连接工厂内外的人和机器为中心的全方位信息生态系统,最终使任何人和物在任何时间、任何地点都能实现彼此信息共享。消费者在要求个性化商品和服务的同时,企业和消费者的关系发生变化,消费者将参与到企业的生产过程中,消费者可以跨地域通过5G网络,参与产品的设计,并实时查询产品状态信息。

?

2、工厂维护模式全面升级

?

大型企业的生产场景中,经常涉及到跨工厂、跨地域设备维护,远程问题定位等场景。5G技术在这些方面的应用,可以提升运行、维护效率,降低成本。5G带来的不仅是万物互联,还有万物信息交互,使得未来智能工厂的维护工作突破工厂边界。工厂维护工作按照复杂程度,可根据实际情况由工业机器人或者人与工业机器人协作完成。在未来,工厂中每个物体都是一个有唯一IP的终端,使生产环节的原材料都具有“信息”属性。原材料会根据“信息”自动生产和维护。人也变成了具有自己IP的终端,人和工业机器人进入整个生产环节中,和带有唯一IP的原料、设备、产品进行信息交互。工业机器人在管理工厂的同时,人在千里之外也可以第一时间接收到实时信息跟进,并进行交互操作。

?

设想在未来有5G网络覆盖的一家智能工厂里,当某一物体故障发生时,故障被以最高优先级“零”时延上报到工业机器人。一般情况下,工业机器人可以根据自主学习的经验数据库在不经过人的干涉下完成修复工作。另一种情况,由工业机器人判断该故障必须由人来进行操作修复。

?

此时,人即使远在地球的另一端,也可通过一台简单的VR和远程触觉感知技术的设备,远程控制工厂内的工业机器人到达故障现场进行修复,工业机器人在万里之外实时同步模拟人的动作,人在此时如同亲临现场进行施工。

?

5G技术使得人和工业机器人在处理更复杂场景时也能游刃有余。如在需要多人协作修复的情况下,即使相隔了几大洲的不同专家也可以各自通过VR和远程触觉感知设备,第一时间“聚集”在故障现场。5G网络的大流量能够满足VR中高清图像的海量数据交互要求,极低时延使得触觉感知网络中,人在地球另一端也能把自己的动作无误差地传递给工厂机器人,多人控制工厂中不同机器人进行下一步修复动作。同时,借助万物互联,人和工业机器人、产品和原料全都被直接连接到各类相关的知识和经验数据库,在故障诊断时,人和工业机器人可参考海量的经验和专业知识,提高问题定位精准度。

?

3、工业机器人加入“管理层”

?

在未来智能工厂生产的环节中涉及到物流、上料、仓储等方案判断和决策,5G技术能够为智能工厂提供全云化网络平台。精密传感技术作用于不计其数的传感器,在极短时间内进行信息状态上报,大量工业级数据通过5G网络收集起来,庞大的数据库开始形成,工业机器人结合云计算的超级计算能力进行自主学习和精确判断,给出最佳解决方案。在一些特定场景下,借助5G下的D2D(Device-to-Device,意为:设备到设备)技术,物体与物体之间直接通信,进一步降低了业务端到端的时延,在网络负荷实现分流的同时,反应更为敏捷。生产制造各环节的时间变得更短,解决方案更快更优,生产制造效率得以大幅度提高。

?

我们可以想象未来10年内,5G网络覆盖到工厂各个角落。5G技术控制的工业机器人,已经从玻璃柜里走到了玻璃柜外,不分日夜地在车间中自由穿梭,进行设备的巡检和修理,送料、质检或者高难度的生产动作。机器人成为中、基层管理人员,通过信息计算和精确判断,进行生产协调和生产决策。这里只需要少数人承担工厂的运行监测和高级管理工作。机器人成为人的高级助手,替代人完成人难以完成的工作,人和机器人在工厂中得以共生。

?

4、按需分配资源

?

5G网络通过网络切片提供适用于各种制造场景的解决方案,实现实时高效和低能耗,并简化部署,为智能工厂的未来发展奠定坚实基础。

?

首先,利用网络切片技术保证按需分配网络资源,以满足不同制造场景下对网络的要求。不同应用对时延、移动性、网络覆盖、连接密度和连接成本有不同需求,对5G网络的灵活配置尤其是对网络资源的合理快速分配及再分配提出了更严苛的要求。

?

作为5G网络最重要的特性,基于多种新技术组合的端到端的网络切片能力,可以将所需的网络资源灵活动态地在全网中面向不同的需求进行分配及能力释放;根据服务管理提供的蓝图和输入参数,创建网络切片,使其提供特定的网络特性。比如极低的时延、极高的可靠性、极大的带宽等,以满足不同应用场景对网络的要求。例如在智能工厂原型中,为满足工厂内的关键事务处理要求,创建了关键事务切片,以提供低时延,高可靠的网络。

?

在创建网络切片的过程中,需要调度基础设施中的资源。包括接入资源、传输资源和云资源等。而各个基础设施资源也都有各自的管理功能。通过网络切片管理,根据客户不同的需求,为客户提供共享的或者隔离的基础设施资源。由于各种资源的相互独立性,网络切片管理也在不同资源之间进行协同管理。在智能工厂原型中,展示了采用多层级的、模块化的管理模式,使整个网络切片的管理和协同更加通用、更加灵活并且易于扩展。

?

除了关键事务切片,5G智能工厂还将额外创建移动宽带切片和大连接切片。不同切片在网络切片管理系统的调度下,共享同一基础设施,但又互不干扰,保持各自业务的独立性。

?

其次,5G能够优化网络连接,采取本地流量分流,以满足低延迟的要求。每个切片针对业务需求的优化,不仅体现在网络功能特性的不同,还体现在灵活的部署方案上。切片内部的网络功能模块部署非常灵活,可按照业务需求分别部署在多个分布式数据中心。原型中的关键事务切片为保证事务处理的实时性,对时延要求很高,将用户数据面功能模块部署在靠近终端用户的本地数据中心,尽可能地降低时延,保证对生产的实时控制和响应。

?

此外,采用分布式云计算技术,以灵活的方式在本地数据中心或集中数据中心部署基于NFV(Network Function Virtualization,意为:网络功能虚拟化)技术的工业应用和关键网络功能。5G网络的高带宽和低时延特性,使智能处理能力通过迁移到云端而大幅提升,为提升智能化水平铺平了道路。

?

在5G网络的连接下,智能工厂成为了各项智能技术的应用平台。除了上述四类技术的运用,智能工厂有望与未来多项先进科技相结合,实现资源利用、生产效率和经济收益的最大化。例如借助5G高速网络,采集关键装备制造、生产过程、能源供给等环节的能效相关数据,使用能源管理系统对能效相关数据进行管理和分析,及时发现能效的波动和异常,在保证正常生产的前提下,相应地对生产过程、设备、能源供给及人员等进行调整,实现生产过程的能效提高;使用ERP(Enterprise Resource Planning,意为:企业资源计划)进行原材料库存管理,包括各种原材料及供应商信息。当客户订单下达时,ERP自动计算所需的原材料,并且根据供应商信息即时计算原材料的采购时间,确保在满足交货时间的同时做到库存成本最低甚至为零。

?

因此,5G时代的智能工厂将大幅改善劳动条件,减少生产线人工干预,提高生产过程可控性,最重要的是借助于信息化技术打通企业的各个流程,实现从设计、生产到销售各个环节的互联互通,并在此基础上实现资源的整合优化,从而进一步提高企业的生产效率和产品质量。

文章来源于网络

一文看懂实现智能制造的十项技术

智能制造是一个非常大非常广的概念,除了涉及制造企业本身,还与供应链的上下游企业息息相关,它包含自动化、信息化、智能物流、智能计算、智能决策等多个方面。

?

智能制造改革牵扯的是整个制造业,毫无疑问这是一个万亿级别的大市场。所属的细分市场各个都是大片蓝海:未来10年中国机器人市场将达6000亿元人民币;预计2018年,中国民用无人机市场将达到110。9亿元;预计至2020年,中国自动化物流系统市场规模将超过1000亿元。

?

智能制造是一个非常大非常广的概念,除了涉及制造企业本身,还与供应链的上下游企业息息相关,它包含自动化、信息化、智能物流、智能计算、智能决策等多个方面。智能制造的实现是一个从手工到半自动化,再到全自动化,最终实现智能化、柔性化生产的过程。智能制造将制造业与信息技术和互联网技术相结合,在生产工艺、生产管理、供应链体系、营销体系等多个方面实现全产业链的互联互通。

?

?

那么,企业该如何实现自己的智能制造改革?以下十项技术都是知识点:

?

1、多源多通道数据实时采集感知技术

?

多源传感器数据采集是智能制造过程中实现智能感知的前提,通过各类传感器(压力传感器、位移传感器、视觉传感器等)组成,实现对多源多通道分布式数据的实时采集、分析和转换等。

?

多源传感器数据采集系统包含以下几项技术:

·信号转换技术

·实时网络通信技术

·多线程管理技术

·数据缓存池技术

·黑匣子技术

·信息安全技术

2、异构数据内容融合与传输共享技术

通过对各种异构计算数据进行内容分析和融合处理,从海量数据中挖掘隐藏信息和有效数据,提高智能制造过程中各种装备状态监测的准确性。

?

异构数据包括:海量的多媒体传感数据、文本/超文本、声音数据、影像数据、视频序列等。

?

3、复杂工况的多任务自适应协同技术

智能制造的实现往往需要能够自主分析当前的工况环境和任务要求,实现多任务自适应协同规划,并根据不同任务难度自适应调整作业策略。

?

多工况包含以下几种(以挖掘作业为例):

·常用,挖掘形状规则,且经常使用该功能

·特殊,挖掘形状规则,但不经常使用

·自主标记,挖掘形状不规则,但经常使用

·高度自定义,高度依赖驾驶经验的操作

?

?

4、多机协同的集群化交互与控制技术

智能制造的多机集群模仿生物集群行为,单机间通过彼此信息交互与自主控制来进行协同工作,从而可在各种险恶环境下低成本完成多样性的复杂任务。

?

具体包括:

·远程操控端,人机交互装置远程遥控,任务指派和监控

·移动用户端,网页、APP做任务指派和监控

·智能机械端,环境感知、机身工况传感、自主作业控制

·移动互联网,无线数据通讯承载

·卫星定位,导航与测量辅助

·云端数据中心,环境建模分析,任务和轨迹规划,大数据分析和诊断

?

5、大数据驱动故障诊断深度学习技术

制造装备运行过程中产生的海量特征数据蕴含大量的故障信息,在收集智能装备运行特征数据的基础上,应用深度学习算法对大数据进行知识挖掘,获寻与故障有关的诊断规则,实现对制装备的故障进行智能预测和分析。

?

6、数字孪生与数字样机建模分析技术

数字孪生充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映了相对制造过程中各装备的全生命周期过程。

?

7、多技术路线工作方案优化决策技术

针对不确定性的、半结构化或非结构化的智能制造工作方案决策问题,通过信号推理、定量推理等方法,在不确定性、不完备、模糊信息的环境下实现智能制造与产品设计旨在服役多目标多技术路线工作方案优化的自主决策。

?

8、工艺工装协同推送与自动装夹技术

个性化推送技术及语义检索技术融入工艺工装推送过程中,基于融合智能装备与产品工艺工装特征的个性化语义检索,形成个性化的工艺工装协同推送机制,提高智能制造工艺设计过程中获取产品工艺工装的效率。

?

9、产品知识图谱与知识网络构建技术

通过对分布的多学科知识数据进行结构层次上的集成,消除多学科多领域知识数据的语法和语义分歧,使得数据结构具有一致性,进而对设计设计库数据进行知识表示,完成知识库的建立。

?

结构化数据、半结构化数据、非结构化数据通过结构化改造和筛选整合,形成趋同或者一致且无冗余的结构化数据,也就是将客观世界主观抽象成设计数据库,再通过知识表示形成知识库。

?

10、机电液一体化云平台知识服务技术

知识服务技术着手于知识的自动推送,有序地组织机、电、液一体化跨学科知识,并在合适的设计过程中推送给设计人员合适的设计知识,从而实现跨学科知识服务的个性化、高效化和智能化。

文章来源于网络

5G+智能制造=?

5G时代即将来临,引爆了人们对未来变化的遐想。5G应用已经成了热门话题,如5G AR/VR、5G车联网、还有重量级热点5G智能制造。那么5G智能制造是什么概念,5G对于智能制造有什么样的意义?

制造业在国家层面乃至整个人类社会扮演着至关重要的角色,智能制造已然成为全球化课题和国家级战略课题,很多国家都在智能制造领域进行了规划和部署,如中国“中国制造2025”、德国“工业4.0平台”、美国“工业互联网计划”等。

其中信息通信系统升级是智能制造中很重要的一环,5G在使能智能工厂多样化需求方面,有着绝对的优势。

华为Wireless X Labs通过典型的智能制造应用场景和Use case,对智能制造对5G网络的多样化需求进行研究。X Labs是一个新的研究平台,将运营商,垂直行业合作伙伴和行业领导者聚集在一起,共同探索移动应用的未来用例,推动企业和技术创新,促进开放的行业生态系统。如下为华为和德电针对5G端到端低时延网络在智能制造领域的联合展示。

01

各个国家都这么重视

那么什么是智能制造

?

广义上智能制造是具有信息感知获取、智能判断决策、自动执行等功能的先进制造过程及系统与模式的总称。具体来看智能制造体现在制造过程的各个环节与信息技术的融合,如大数据、云计算、人工智能、物联等技术。

?

简而言之,智能制造具有以下特征:以智能工厂为载体,以关键制造环节的智能化为核心,以端到端数据流为基础,以通信网络为基础支撑。通过自组织的柔性制造系统,实现高效的个性化生产的目标。

以汽车生产线为例,智能制造柔性生产过程中,定制化车辆通过云化的智能信息物理系统的调度在动态生产线上自主移动,完成生产步骤。动态产线可按需组合以满足不同车型和配置的需要,实现车辆定制化的生产,并且产线智能生产将大大缩短定制化周期,同时也极大减少了汽车厂商的库存以及资金占用,降低了生产成本。而传统顺序生产的汽车产线在灵活度上很难满足高度定制化的需求,并且定制化生产周期更长。

?

02

智能制造对网络有哪些需求

5G在智能制造中

有哪些典型应用

智能制造为什么需要无线通信

?

了解什么是智能制造后,显而易见智能制造过程中云平台和工厂生产设施的实时通信、以及海量传感器和人工智能平台的信息交互,和人机界面的高效交互,对通信网络有多样化的需求以及极为苛刻的性能要求,并且需要引入高可靠的无线通信技术。

?

高可靠无线通信技术在工厂的应用来看,一方面,生产制造设备无线化使得工厂模块化生产和柔性制造成为可能。另一方面,因为无线网络可以使工厂和生产线的建设、改造施工更加便捷,并且通过无线化可减少大量的维护工作降低成本。

?

无线通信网络在智能制造应用面临哪些挑战

?

在智能制造自动化控制系统中,低时延的应用尤为广泛,比如对环境敏感高精度的生产制造环节、化学危险品生产环节等。智能制造闭环控制系统中传感器(如压力、温度等)获取到的信息需要通过极低时延的网络进行传递,最终数据需要传递到系统的执行器件(如:机械臂、电子阀门、加热器等)完成高精度生产作业的控制,并且在整个过程需要网络极高可靠性,来确保生产过程的安全高效。

?

此外,工厂中自动化控制系统和传感系统的工作范围可以是或者几百平方公里到几万平方公里,甚至可能是分布式部署。根据生产场景的不同,制造工厂的生产区域内可能有数以万计传感器和执行器,需要通信网络的海量连接能力作为支撑。

?

5G网络具备的能力

?

华为在北京怀柔率先完成了由IMT-2020(5G)推进组组织的中国5G技术研发试验无线技术第二阶段测试。在C-Band 的测试环节中,利用200MHz带宽,通过5G新空口及大规模多入多出等技术进行测试,小区峰值超过20Gbps,空口时延在0.5ms以内,单小区大于1000万连接。

?

和传统的移动通信技术相比,5G将进一步提升用户体验:在容量方面,5G通信技术将比4G实现单位面积移动数据流量增长1000倍;在传输速率方面,单用户典型数据速率提升10到100倍,峰值传输速率可达10Gbps(相当于4G网络速率的100倍);端到端时延缩短5倍;在可接入性方面:可联网设备的数量增加10到100倍;在可靠性和能耗方面:每比特能源消耗应降至千分之一,低功率电池续航时间增加10倍。

?

03

5G典型制造业应用场景

?

5G 使能工业AR应用

?

?

在未来智能工厂生产过程中,人将发挥更重要的作用。然而由于未来工厂具有高度的灵活性和多功能性,这将对工厂车间工作人员有更高的要求。为快速满足新任务和生产活动的需求,增强现实AR将发挥很关键作用,在智能制造过程中可用于如下场景:如:监控流程和生产流程。生产任务分步指引,例如手动装配过程指导;远程专家业务支撑,例如远程维护。

?

在这些应用中,辅助AR设施需要最大程度具备灵活性和轻便性,以便维护工作高效开展。因此需要将设备信息处理功能上移到云端,AR设备仅仅具备连接和显示的功能,AR设备和云端通过无线网络连接。AR设备将通过网络实时获取必要的信息(例如,生产环境数据、生产设备数据、以及故障处理指导信息)。

?

在这种场景下AR眼镜的显示内容必须与AR设备中摄像头的运动同步,以避免视觉范围失步现象。通常从视觉移动到AR图像反应时间低于20ms,则会有较好的同步性,所以要求从摄像头传送数据到云端到AR显示内容的云端回传需要小于20mms,除去屏幕刷新和云端处理的时延,则需无线网络的双向传输时延在10ms内才能满足实时性体验的需求。而该时延要求,LTE网络无法满足。

?

5G使能工厂无线自动化控制

?

?

在自动化控制中,倒立摆是典型的应用。倒立摆原理用于机器人各种姿态控制、航空飞船对接控制等姿态控制等工业应用。华为X Labs通过倒立摆验证5G对极低试验自动控制的价值,研究表明,当倒立摆运行在4G模式下时,4G的过高时延,使得倒立摆的控制指令不能得到快速执行,倒立摆起摆到稳态的时间过长,达到13.2秒。

?

当运行在5G模式下时,5G的1ms超低时延,使倒立摆的控制指令快速执行,起摆到稳态只用4秒。通过对比,可以看到5G低时延网络在自动控制的巨大价值,网络端到端时延从4G的50ms减低至5G的1ms。

?

自动化控制是制造工厂中最基础的应用,核心是闭环控制系统。在该系统的控制周期内每个传感器进行连续测量,测量数据传输给控制器以设定执行器。典型的闭环控制过程周期低至ms级别,所以系统通信的时延需要达到ms级别甚至更低才能保证控制系统实现精确控制,同时对可靠性也有极高的要求。如果在生产过程中由于时延过长,或者控制信息在数据传送时发生错误可能导致生产停机,会造成巨大的财务损失。

?

此外,在规模生产的工厂中,大量生产环节都用到自动控制过程,所以将有高密度海量的控制器、传感器、执行器需要通过无线网络进行连接。

?

闭环控制系统不同应用中传感器数量、控制周期的时延要求、带宽要求都有差异,典型来看,周期时间和通信带宽大小的一些典型值如下:

?

?

5G切片网络可提供极低时延长、高可靠,海量连接的网络,使得闭环控制应用通过无线网络连接成为可能。基于华为5G的实测能力:空口时延可到0.4ms,单小区下行速率达到20Gbps,小区最大可支持1000万+连接数。由此可见,移动通信网络中仅有5G网络可满足闭环控制对网络的要求。

?

5G 使能工厂云化机器人

?

?

04

云化机器人的通信需求

?

在智能制造生产场景中,需要机器人有自组织和协同的能力来满足柔性生产,这就带来了机器人对云化的需求。?和传统的机器人相比,云化机器人需要通过网络连接到云端的控制中心,基于超高计算能力的平台,并通过大数据和人工智能对生产制造过程进行实时运算控制。

?

通过云技术机器人将大量运算功能和数据存储功能移到云端,这将大大降低机器人本身的硬件成本和功耗。并且为了满足柔性制造的需求,机器人需要满足可自由移动的要求。因此在机器人云化的过程中,需要无线通信网络具备极低时延和高可靠的特征。

?

5G网络是云化机器人理想的通信网络,是使能云化机器人的关键。5G切片网络能够为云化机器人应用提供端到端定制化的网络支撑。5G网络可以达到低至1ms的端到端通信时延,并且支持99.999%的连接可靠性,强大的网络能力能够极大满足云化机器人对时延和可靠性的挑战。

?

华为已与德国与制造企业开展智能制造领域的合作。如与Festo共同合作基于5G切片网络的云化机器人的项目,项目通过5G uRLLC(超高可靠和低时延通信)切片网络,针对云化机器人闭环控制系统的高可靠性和实时性的满足度进行测试。

?

?

机器人的轨迹信息和控制数据在制造云中处理有助于系统计算能力的扩展和机器人平台的节能。机器人生产服务与制造云的结合意味着将工业机器人的基本功能与高性能的计算系统进行实时协同,5G切片网络使能了这一应用场景。

?

05

机器人与协同设施间的

通信需求

?

在智能制造柔性生产中,移动机器人是关键的使能者。在生产过程中要求多移动机器人之间的协同和无碰撞作业,所以移动机器人之间需要实时进行数据交换满足该需求。移动机器人和外围设备间也需要进行通信。例如,如起重机或其他制造设施。因此移动机器人需要和周边协同设施机进行实时数据交换。

?

?

随着智能制造场景的引入,制造对无线通信网络的需求已经显现,5G网络可为高度模块化和柔性的生产系统提供多样化高质量的通信保障。和传统无线网络相比,5G网络在低时延、工厂应用的高密度海量连接、可靠性、以及网络移动性管理等方面优势凸显,是智能制造的关键使能者。

文章来源于网络

智能制造的三个支点。

如何实施智能制造?需要考虑智能制造的三个支点:产品、装备和过程。

笔者在《论智能制造》系列中的“论智能制造的三个阶段”中,谈到了对三个阶段的基本认识。而如何实施智能制造,则需要考虑智能制造的三个支点:产品、装备和过程。

图1? 智能制造的三个支点

第一个需要考虑的是推动智能制造的目标是什么。显然,企业追求的是产品,而不是要把企业搞的有多时髦。企业销售产品的时候,不是要宣传企业的生产线有多漂亮、多现代,而一定要说明这个产品的价值何在。产品是企业面向社会的表现。智能制造的目标是产品,而不是智能制造本身。因此,产品的智能化是企业必须考虑的首要问题之一。智能制造如果不能生产出智能的产品,智能制造就失去了时代的意义。而且,企业的产品如果不是智能化的,产品和企业今后被淘汰的可能性就很大。

第二个支点是装备,生产过程(包括研发、设计)中的每一个关键环节上的装备,一定要智能化。如果这个智能化实现不了,劳动生产力和劳动效率就不可能得到很大提高,企业可能就没有竞争力。不是数字化、网络化和智能化的生产装备,就不是这个时代的先进制造装备。而且,如果设备没有智能化,也可能无法生产出企业想要生产的智能化产品。

第三个支点是企业生产过程的智能化问题。装备智能化解决的是生产过程中“点”的智能化问题;企业只有实现生产全过程的智能化,才能实现企业全局的智能化,才能够实现智能化效益的最大化。

?

◆智能产品是第一支点◆

一个机床生产厂,生产装备和过程如果都是智能化的,而它生产出来的机床却是一般的机床,没有智能化的要素,那么这个机床厂的前途就非常堪忧。因为,他自己都不会去购买这样不够智能化的机床。

因此,任何一个企业在考虑其智能制造如何发展的时候,首先应该想到的是自己的产品怎么实现智能化。即使生产过程没有部分或全部实现智能化,能够把智能的产品做出来,那么企业还是应该首先考虑产品的智能化问题。

产品的智能化,是通过产品中包含有各种复杂程度不等的计算机系统,尤其是嵌入式系统,来实现的。嵌入式系统不仅可以成为智能制造最重要最具有代表性的技术,而且会形成一个庞大的产业链。中国的嵌入式系统,发展的速度比较缓慢——尽管起步并不晚。产品所用的嵌入式系统,绝大多数对于芯片的要求都不一定特别高,一般也就是几十纳米到上百纳米,甚至档次再低一点,也或许够用。因此,技术难度并不大。

产品智能化是当今计算技术发展的一个新的重大趋势。计算技术发明的初衷是为了科学计算。而后,发展为支持人类各种业务活动的信息处理和传播,即业务计算。业务计算的覆盖范围已经比科学计算要大得多。上世纪90年代以后,随着互联网的发展,QQ、微信、Facebook等开始崛起,计算技术渗入了人们的社会生活,大大地推动了社会计算的发展,计算技术的应用覆盖范围则更进一步扩大。

现在,计算技术开始向各种产品领域渗透,提升产品的智能化水平。智能产品数以百亿,甚至千亿计,产品计算的覆盖范围可以说是“无远弗届”,一定会给整个IT产业带来巨大的变化。因此,计算技术应用的下一个热点,是产品计算。所有的产品都要程度不等地走向智能化,计算都有可能参与其中。这一点,跟工业互联网快速发展的需求有很大的关系。

图2? 计算技术应用的发展阶段

现在的智能产品跟以前所谓的嵌入式系统功能需求还不完全一样,主要功能体现在三个方面。第一个是传感,产品需要能够感受外部的情况变化,或者能够整合产品内部的数据。第二个是计算,包括产品本身的操作系统,以及产品使用的各种应用系统。例如,从数据分析到高端计算——也就是人工智能。第三个是联网,随着全球物联网的发展,产品可能具有雾计算、边缘计算和云计算相联结的功能。因此新一代的智能产品,跟以前讲的嵌入式系统的概念已经大不相同。

图3? 无处不在的智能产品

?

◆智能装备是最大难点◆

装备是智能制造最大的难点。生产装备一般都比较复杂,而且批量可能不大,所采用的工业软件也往往非常复杂。这使得生产成本很高,市场很小,因此愿意或有实力从事智能装备制造的企业并不多。而且,由于装备的开发周期长,导致企业经营的风险很大。

另外,装备制造的难点很大程度上是在软装备上面,即以工业软件为代表的软装备,包括CAD/CAE这样的软件工具。没有软装备,就不可能有“数字化、网络化、智能化”。抽去软件,信息化的一切成果都不复存在。工业软件首先是一个工业产品,而且往往是高端工业产品。这是中国制造2025主要的难点,而工业界对这一点的认识,还很不充分。

?

◆过程智能化◆

发达国家的制造业在生产装备智能化这一点上,已经非常领先。尤其是日本和德国,已经基本上垄断了全球重大制造业生产装备的市场。而智能制造的下一步的发展,就是要实现过程的智能化,完成从装备这个“点”向过程这条“线”的发展。

过程智能化最典型的代表,正是工业4.0和工业互联网的奋斗目标。工业4.0提出,企业的信息系统要走向一体化,包括纵向一体化和横向一体化。纵向一体化就是《三论智能制造》的系列之一中提到的企业的内部网,而横向一体化正是企业的外部网。现在,要把内部网和外部网完全整合在一起,将数据完全打通。

图4? 内部网和外部网的一体化

此外,要把整合之后的系统,打造成一个智能物理系统(Cyber-Physical-System, CPS)。这里的Cyber意指计算机或计算机网络。在很多现代化企业里,不管内部网或外部网,都还只是一个独立的计算机网络或者系统,或者实现了初步的整合。如何跟企业这个物理实体融为一体,有效地运转,是一门大学问。

美国国家科学基金(NSF)在2006年的一个报告中指出,现有的、工业时代发展出来的系统科学(包括系统工程理论),还不能很好地回答这类问题。他们认为,企业这个物理实体与其内含的计算机和网络系统如何协同一致、高效精确的工作,如何增强这类系统的适应性、自主性、功能性、可靠性、安全性、可用性和效率,将会发展成为一个新的系统工程学,是美国需要重点发展的前沿命题。实际上,美国关于CPS的研究报告非常多,对这个命题非常关注。

?

◆过程智能化的实现◆

工业4.0或者工业互联网的目标,不仅要把内部网、外部网连起来,而且要变成一个智能物理系统(CPS)。二者都可以通过一个“5C(五层)”结构来表述。

图5 工业互联网和工业4.0的

“5C(五层)”架构

最下面一层是智慧的连接层,第二层是数据转换成信息,第三层是Cyber层,是企业的云计算数据中心。在这里,需要把第二层处理所得的有效数据,与企业计算机系统中相对应的期望值做对比分析。第四层是认知层,根据对比差异,找到问题之所在及解决问题的方法。因此,这一层实际上是一个决策层。第五层是配置层,可以按照决策要求,通过计算机网络,对人、对物、对计算机进行重新配置或更改。这样的一个五层结构,构成了一个标准的反馈控制系统,可以对企业的控制对象,即:人(员工)、机器、计算机系统、各种物理实体等,进行实时的反馈和控制。这样的一个反馈系统,其各层次所对应的技术支撑,如图5所示。正是利用这些当下最时髦的先进技术,工业互联网实现了企业整个业务活动全过程的的智能控制。

根据这个思路,工业4.0和工业互联网在2015年分别完成了系统的架构设计。工业互联网的参考架构,可以清楚地说明系统的要素和相互之间的关系,并提供了一个开放的“工业互联网系统设计指南”。应该强调的是,这里说的是指南,是给出了一个大家共同努力、同向而行的方向,而不是标准。

这个架构设计描述了工业互联网系统的内外三层结构。从边缘层,到平台层,再到企业层,如果我们把它看作是一个球体的话,外面就是设备端的边缘层,中间是平台层(工业互联网平台,主要指这一部分。当然现在也有将工业互联网平台泛化的趋势),最内层是企业层。在边缘层上主要是边缘的网关,采集各种各样的数据;送到平台层之后,平台层对数据做必要的处理和分析;分析完之后,再送达企业层,送到企业的应用系统。企业会根据不同的应用做不同的分析,做出判断和决策,将数据再往回传送到平台层和边缘层,直至送达企业内外联接的各个部门和单位。

图6? 工业互联网架构的内外三层结构

(来源:工业互联网联盟的白皮书)

显然,数据分析和处理在工业互联网系统中极为重要,包括:端点数据的获取、从数据中提取信息的先进数据处理技术,各种决策模型的分析计算,以及系统结果的输出。其中,大量使用的是计算科学的办法:需要建模,需要算法,需要数据等等,最后产生的是决策数据。当然,安全、可信、隐私等,在结构中也有详细的考虑。

?

◆智能制造与工业互联网◆

现在,国内关于工业互联网平台的概念讨论很多。工业互联网平台,是一个以企业为中心的平台,而不是说在整个工业行业建一个大的所谓“工业互联网平台”。所谓平台化是发展的趋势,其实是指企业的平台化,每一个大企业都会有自己的一个企业平台,而不会把自己的业务搬到其他企业的平台上去。波音的平台不会到中航工业的平台上,空客的平台也不会到波音的平台上去。

如果一定要说有一个工业和产业共用共享的平台,那这个平台就是全球物联网平台(Internet of Things, IOT),它不是为哪个工业,为哪个部门而设计的,而是面向全世界各行各业乃至个人服务的全球物联网。

工业互联网平台是一个理想的“过程”智能化的平台。设想非常完美,但系统非常复杂。在实现过程当中,未知数还很多,不同产业类别的企业平台之间的差异也很大。例如,中航工业的平台,几乎不太可能拿去给中石油用,基本上要推倒重建。所以,每个企业一定要从自身的紧迫需求和实际效益出发,分步推进,绝对不能盲目跟随,尤其考虑到当前中国制造业发展的水平和信息化的水平离国际先进水平相差仍然很大,“过程”智能化的路途还比较遥远。

如果把智能制造的全部资源和精力都投在工业互联网平台上,又把平台理解为产业的平台,可能就误判了智能制造的发展方向。当务之急,还是我们的产品和装备的智能化问题,这对当下的中国来讲,是智能制造的重点努力方向。

文章来源于网络

精益生产如何走进智能制造

明确智能制造必须服务于企业经营

无论我们对于智能制造,用何种定义与实现方法进行探讨,我们都必须以企业的经营战略为目标。

企业的经营在于:

①为消费者/客户提供质优价廉的产品

②为股东投资确保回报

③为保障员工的福利

这是企业经营者必须考虑的,也是企业作为整体的价值所在。

当下对于智能制造的讨论多数聚焦于技术之实现,多是以局部看全局,而另一方面,为了智能制造而上系统也是偏离了企业经营之本质,如何厘清经营与智能制造间的关系,建立有效的路径分析与判断,并逐次有效的实施整体战略,对于企业而言,尤为重要,因为,这关乎企业长久的存亡,而非短期之政策红利。

二、每个概念所扮演的角色如何?

尽管我们不能把已经实现的称之为概念,但是这里将以其所对应的领域来进行阐述。 

 

1.精益是数字化的根基

精益是一种不断改善经营效率,发挥资源,包括核心的人的能动性力量,持续学习不断改善,让企业不断提升竞争能力,消除浪费就是一种对资源的最大化利用,发挥成本效率的途径,最终去实现经营的利润率最大化。

精益对生产中的过度生产、等待、运输、过度加工、库存、缺陷返工、走动、人才浪费进行了聚焦,并提出了诸多的方法予以消除。这些与生产制造单元的经营目标紧密相关。

我们总把计算机、MES/ERP这些理解为数字化系统,但是,数字化的根基是“数字”—是基于“量化管理”的管理科学思想,因此,所谓的数字化运营的本质在运营,而非数字,数字只是实现的数字化运营的手段。

之所以说精益是数字化的根基在于精益为生产提供了各种量化方法、工具,例如KPI、OEE、TPM、RCA、5S、目视化管理、看板等,这些使得工厂成为了一个可以被量化、可视化、透明化的工厂,一切都服务于经营目标:质量、成本与交付能力。

智能工厂的性能指标要求是基于精益的可量化而定义的,这些是数字化运营、智能制造、工业4.0等所有概念必须去实现的目标。

2.自动化的角色

传统上,我们仅站在自动化行业的角度理解自动化,就是传感器检测、控制循环、显示、趋势报警,然而,当我们把自动化放在智能制造大环境下,我们会发现它扮演的角色是服务于运营本质的。

(1)确保效率

为什么要自动化?从传统生产运营角度而言,采用人工搬运、加工的过程显然与机器的速度无法相比,尤其是谈到智能制造的集成生产,将继续削减中间不必要的环节—精益中所定义的不增值环节。事实上,在自动化程度上,连续型生产的自动化程度要更高。

(2)确保生产质量

高精度的伺服定位与同步、机器人集成制造使得产品质量及其一致性不断提高,这些都是机器相较于人而言更为重要的作用。

(3)提供生产灵活性

运动控制不仅提供了高精度的加工质量,而且还确保了生产的柔性,就像在各种机器上,运动控制扮演让生产更为灵活的角色,通过参数设置,伺服系统自己规划加工曲线,确保平滑的工艺切换。

(4)提供上行数据采集与下行指令执行

当然了,自动化系统还扮演了精益的可视化管理角色,包括趋势、报警,当然也包括生产中的能源、维护、品质数据向管理系统的输送,当然,也接受来自管理系统的指令,如新的订单加工参数、工序等。

3.数字化/信息化的角色

自动化已经让标准化的大规模生产达到了极高的水平,但是,当生产的个性化需求变得越来越多的时候就产生了新的挑战,从精益角度,质量、成本与交付都成了困难,几个例子来说明:

不良品率:当印刷批次变小时,开机浪费将提高不良品率,使得质量实际上下降;

成本:当不良品率提高,成本显然提高,而个性化生产带来的工艺切换时间也会造成成本上升、当机也会造成成本的损耗,而从个性化产品成本计量角度,必须将成本分配在每个批次的产品上,那么这个生产计划中的能耗、机器效率就变得更为重要-显著提高了成本。

交付能力显著下降:工艺切换的时间消耗、当机、返工这种在大批量生产已经非常成熟的解决方案在个性化时代就会放大,使得交付下降。

从这个角度来观察生产制造的要求就会发现,在更大的全局来优化产线成为了必然,例如:

(1)如何让生产运营过程最大的协同来消除中间的时间、能耗等浪费?

(2)当有设备停机产线如何自动分配负载?

(3)在批次降低质量迭代周期变小时如何削减开机浪费?

(4)工艺切换的时间耗费如何降低以达成快速交付?

再回到运营角度来思考,就会发现,智能制造必须借助于信息的透明来分析问题,数据连接起来,才能全景的观察产线,才能寻找运营的优化。

而制造级的数据采集由于垂直行业的差异性一直是一个挑战,而事实上在最近几年运营智能制造的项目中这一问题也比较突出,造成了很大的障碍,这也是为什么信息化系统成为了热点的原因,因为信息化解决了以下几个问题:

①?共享数据模型使得数据对象变得简单,可以较为便利的方式对数据进行采集;

②?使得跨平台的系统之间可以进行数据基于标准与规范进行交互;

③?垂直行业信息模型的集成更为垂直方向提供了数据便利。

不仅要梳理数据的传输,也要明白数据的流向—即用途,也是要服务于生产运营的。

4.智能化–全局优化与决策支持

自动化建立在对单个控制任务的调节,即使多变量系统通常也是在一台机器、一个子系统中,而生产的全局优化要在更高维度,而这个时候,计算能力、模型能力已经超出了目前的机理模型。

因此,总结而言,智能化是必须建立在精益运营、自动化、信息化之上的全局的优化问题,通过更为全局的模型,对市场端的需求拉动、工艺设计与辅助制造、供应链、生产制造环节、运营维护整个的协同,就形成了整体的基于设备状态、生产订单、能源消耗、财务成本等共同构成的“寻优”,并给予运营“决策支持”。

三、知识化人才培养-并非题外话

知识化人才培养探讨的是智能制造从精益基础到智能的过程,考虑知识与人才培养的关系对于智能制造同样至关重要。

人是最为重要的一个环节,在整个制造过程中,从精益的持续改善、到自动化控制的机器设计、信息化乃至智能化的学习等,这些都将依赖于人的智慧传输成为“标准”、“规范”,可重用的,能够让知识成为一种可被系统重复利用,并能自己不断学习升级,用于最终的优化决策。

不仅软件复用,人的知识经验也必须复用,实物的材料和非实物的时间都是资源,而人的智慧、经验更是资源,从性价比的角度来说,人的经验具有巨大的潜力,这是更为重要的资源。

文章来源于网络

智能制造下的ERP和MES如何做到优势互补?

很多企业对ERP和MES两个主要系统之间的关系相互混淆,甚至出现错误认识。因此,正确认识ERP和MES系统的主要功能,以及MES和ERP在功能上的本质区别,对企业实施信息化进程和系统集成方面具有重要的意义。

ERP和MES的主要功能及特点

企业生产运作管理的任务就是以最少的人力、物力和材料的消耗生产出满足客户要求的产品。某软件公司在企业信息化实施过程中,依据制造业的特性,找出了一条构成制造业信息化的纵向分布的主线——产品生产过程。一般地,企业生产部门根据销售、市场及自身资源等制定中长期生产计划,并下发给各个分厂及生产车间,生产准备和其他部门同时根据生产计划配送生产所需要的各种原材料、人力和设备资源等等,构成了信息化的横向分布的主线。

企业计划资源(ERP)——商务层

企业资源规划(ERP)由美国加特纳公司在20世纪90年代初首先提出。至今ERP有了更深的内涵,在功能上更加趋于完善,同时向上下游供应商扩展。

对于制造企业而言,主要还是以财务为中心结合供应链、生产管理、人力资源管理和资产管理为主要功能核心,共同构筑ERP的内部功能体系。

ERP体现的先进管理理念

1.在管理方面实现了全面预算管理、结算管理、成本控制和计划管理等;

2.在软件体系架构方面具有了快速部署和可移植性的能力。
在企业信息化中无疑要包容所有的企业管理模型,ERP也因此在企业管理层,发挥着重要的作用。制造企业内部,ERP主要以生产部、技术部和财务部为信息核心,以销售部和采购部为信息源头,以设备、人力等其它系统为基础,使信息流在ERP内部得到有效的传递和集成。

以生产方面分析

ERP中的主生产计划模块根据各个企业管理模型提供的人力、原料、设备、工艺标准及销售分析等因素制定企业的生产计划,时间范围通常为月、季、年。各个企业管理模型按照ERP给出的标准形式进行信息的收集和汇总,返回给ERP系统。

ERP完成了生产管理中的所有功能,表面上看信息化已经全部集成在一起,但是当企业的某条生产线要实现更深层次的信息化时,会很明显的表现出:ERP只是在商务层面发挥着巨大作用,而生产线上真正发挥作用的是MES系统。

制造执行系统(MES)——制造执行层

制造执行系统(MES)是位于企业上层计划管理与设备底层工业控制之间、面向车间层的制造过程管理信息系统。作为车间层的先进生产管理技术,MES的集成性、柔性、开放性、自组织、自适应和重构能力对车间制造过程的优化运行和敏捷性发挥着重要的作用。

MES的信息立交桥的作用

纵向数据

如在产品的设计阶段通常是以PDM为核心集成产品设计数据,并且结合ERP形成产品的BOM信息,同时把产品的制造参数、制造工艺信息同时传送给ERP,由ERP主生产计划结合客户的特殊要求编制计划和制造标准下发到各个分厂/车间,制造完成后入库,等待出库指示。

横向数据

1.为ERP提供生产计划的完成率和制造成本;与纵向制造数据结合,提供物流和工厂的设备、人员和制造工艺的准备方面信息,在制造过程中得到的生产数据经过MES的整合和分析后分别发送到不同的系统中,形成信息立交桥的作用;

2.为CRM提供客户准确的订单生产进程;

3.为SCM方面提供完成生产计划所需要的物料配送工作;

4.为PDM返回产品质量信息,支援产品的改进和新产品的开发;

5.为Control层面提供具体制造参数和生产时间;

因此从横向和纵向两个方向上看,MES是信息流的带有统计功能的立交桥,对得到信息进行优化,分别下发给车间生产部门和控制系统。随着企业信息化逐渐深入,企业信息流的闭环将出现信息缺口,MES的信息立交桥的作用越来越显得重要起来。MES制造执行系统已经从概念模块逐渐转向实施方面,从开始的行业化逐渐发展到了今天的智能化、集成化和模块化。MES在系统集成方面表现信息立交桥功能,在内部为生产线提供资源合理组织和优化。

MES的11个主要功能

1.生产资源分配与监控;

2.作业计划和排产;

3.工艺规格标准管理;

4.数据采集(装置在线连接采集实时数据和各种参数信息,控制系统接口,生成生产数据记录、质量数据、绩效信息、台帐累计);

5.作业员工管理;

6.产品质量管理;

7.过程管理(过程控制、APC、基于模型的分析与模拟、与外部解析系统接口);

8.设备维护;

9.绩效分析;

10.生产单元调度;

11.产品跟踪。

从MES的实施和应用来分析通常会把这些功能分别规划为几个功能模块:质量管理、工序计划、作业管理进程管理和统计接口。由此,可以看出生产计划产线跟踪和质量管理等与ERP看似重复的模块。企业在信息化的过程中,对MES和ERP本质的模糊认识往往导致企业在制定信息集成和规划时,出现了系统功能不健全或冗余。

ERP和MES的区别

在实施的过程中ERP和MES功能名称出现了看似重复的现象。然而,信息流动过程中,在范围、服务对象和功能上是不同的,ERP为MES提供总体目标,MES优化执行计划并返回结果二者有机的统一。?

从企业信息化进程来看,ERP系统的作用已经广泛被各类企业所接受。MES目前还属于初步应用期,虽然MES具有沟通上下的功能,但是对于具体企业需求时,要确定两者的界限及功能上的差别,合理划分企业信息化各管理系统功能,这对规划企业信息化具有重要的意义。

文章来源于网络

智能工业,现代化智能仓库立体仓库必不可少

现如今对于大型生产企业来说,仓库里货品的管理问题非常重要,只有仓库进出库管理条理清楚,精准无误,企业内部的资源管理才能达到最优质合理化。现在生产企业可以选择到很多方便化的仓储设备,其中自动立体仓库就是一类运用相当广泛的仓储库,具备着多方面的优势性表现。

自动化立体仓库(AS/RS)智能库的优越性

1.提高空间利用率
立体库的空间利用率与其规划紧密相连。一般来说,自动化高架仓库其空间利用率为普通平库的数倍或数十倍,在当今土地价值很高的情况下,向空间储存受到人们的青睐。

2.便于形成先进的物流系统,提高企业生产管理水平
自动化立体仓库采用先进的自动化物料搬运设备,不仅能使货物在仓库内按需要自动存取,而且可以与仓库以外的物流设备(如:输送机、RGVAGV等)进行有机的连接,并通过计算机管理系统和自动化物料搬运设备使仓库成为企业生产物流中的一个重要环节。从而形成一个自动化的物流系统,这是一种“动态储存”,也是当今自动化仓库发展的一个明显的技术趋势。

3.加快货物的存取节奏,减轻劳动强度,提高生产效率
立体仓库的优越性还表现在具有的快速的出入库能力,能快速妥善地将货物存入高架库中(入库),也能快速及时并自动地将货物送出(出库)。

4.减少库存资金积压,并节省人力
AS/RS系统通过有效地管理手段,通过WMS的管理理念,及时准确将货物信息和数据传递到企业需要的部门或者集团总部,减少了库存资金的积压。并由于设备运行的全自动化而节省了大量的库管人员.

5.现代化企业的标志

现代化企业采用的是集约化大规模生产模式。这就要求生产过程中各环节紧密相连,成为一个有机整体。要求生产管理科学实用。做到决策科学化。为此,建立自动化高架仓库系统是其有力的措施之一。

智能立体仓库是一类相当优秀的仓储库,能够很好的对物品进行存放,而且是自动操作的,节省了大量的人力和空间,能够满足现代企业对于高效作业的具体需求。因而自动化立体仓库在以后是有着更加广泛的用途,作用也会越来越大。

四个小故事趣味讲解智能制造

1

猴子为什么没有变成人

?

生物进化总是超值有利用生存的方向发展,智慧对人的生存是很有利的。但是,猴子为什么没有进化出人的智慧?

?

智慧是很好的东西,但却为此付出了代价。大脑只占人类体重的2%,却消耗了20%~25%的能量;与其他动物相比,这些能量的消耗迟滞了人类的发育。既然生物进化是朝着有利于生存的方向发展,则大脑是否进化决定于“投入产出”是不是合适。

?

与猴子相比,人类的手可以做更多事情;聪明大脑付出的代价,可以通过提高手的劳动能力“赚回来”。这样,人类为“聪明”付出的代价就是值得的。而猴子的爪子只能做简单的工作,“太聪明”就显得不合算。所以,恩格斯说“劳动创造了人。”

?

这个故事告诉我们:智能技术虽好,但关键是要创造足够多的效益,才能健康发展。

?

2

挖土的农民

?

几十年前,在大型的水利工程建设工地上,常常看到成百上千的农民拿着铁锨和锄头挖土。那时,挖掘机早已出现很多年了,一台挖掘机顶的上上百个人。他们为什么不用挖掘机?

?

道理很简答,那时候我们很穷、买不起挖掘机,只好用人工。

?

这个故事高手我们:如果经济发展不到一定的程度,很多好的技术也是没有经济价值的。自动化、智能化技术;高质量、定制化的产品都是这样。只有整个社会的经济发展到一定程度、人工成本提高了,才会对先进技术提出实质性的需求、对高质量提出需求。离开社会需求谈高技术,就像建议营养不足的叫花子去吃海鲜大餐,而无法落地。中国推进智能制造比国外困难,也是这个道理。

?

3

被吃掉的孩子

?

达尔文在非洲发现了一个原始的部落,决定改造他们。于是,他从部落里选了一个优秀的孩子,带到欧洲进行现代教育。长大以后,又带回部落,希望他能把部落带入文明社会。又过了几年,达尔文来到这个部落,却找不到那个孩子。达尔文问酋长,酋长答到:“我们把他吃掉了:他既不会打猎、也不会摘果子,完全是个没用的人。我们只好把他吃掉了。”

?

这个故事告诉我们:先进的东西要发挥作用,必须有与之相适合的环境。比如,高端而健康的市场、优秀的供货商等等。离开这样的环境,拥有高技术的企业很难发挥自己的特长,也就难以生存下去。

?

4

路灯底下找钥匙

?

有人丢了钥匙,在路灯下反复地找了很长时间。有人为他:“你肯定钥匙丢在这里吗?”。那人回答:“不一定?”。“那么你为什么只在路灯底下找?” 那人回答说,“因为只有这里有光、看得见”

?

从某种意义上说,智能制造是资源的重新配置和分工协同;是人与人的分工、企业与企业的分工,也是人和机器的分工。如果我们谈智能制造时,视野所及的范围只是技术本身,而没有看到技术带来的是分工、甚至是生产关系的调整。那么,他就可能找不到出路,就像这个在路灯底下找钥匙的人。党代会没提“智能制造”而是代之以“深度融合”,或许就是这个道理。