液压基础知识

电磁阀结构原理、选型原则一篇搞定

液压装置工作比较平稳,由于重量轻,惯性小,反应快,液压装置易于实现快速启动、制动和频繁的换向。

1)液压传动的特点:

优点:

(1)单位功率的重量轻。即:在同等功率情况下,液压执行元件体积小、重量轻、结构紧凑。

(2)布局灵活方便。液压传动的各种元件,可根据需要方便、灵活地布置。

(3)液压装置工作比较平稳,由于重量轻,惯性小,反应快,液压装置易于实现快速启动、制动和频繁的换向。

(4)操纵控制方便,可实现大范围的无极调速(调速范围达2000:1),还可以在运行的过程中进行调速。

(5)一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长。

(6)容易实现直线运动。用液压传动实现直线运动比机械传动简便。

(7)既易实现机器的自动化,又易实现过载保护,当采用电液联合控制甚至计算机控制后,可实现大负载、高精度、远程自动控制。

(8)液压元件实现了标准化、系列化、通用化,便于设计、制造和使用。

缺点:

(1)液压传动不能保证定比传动,这是由于液压油的可压缩性和泄漏造成的。

(2)工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作。

(3)传动效率偏低。液体流动的阻力损失和泄漏较大,所以效率较低。如果处理不当,泄漏不仅污染场地,而且还可能引起火灾和爆炸事故。

(4)为了减少泄漏,液压元件在制造精度上要求较高,因此它的造价高,且对油液的污染比较敏感。

(5)故障诊断困难。液压元件与系统容易因液压油液污染等原因造成系统故障,而且发生故障不易诊断。

2)压力等级划分(JB824-66):

压力分级:

压力范围

低压 0~2.5 MPa( 0~25Kgf/cm^2);

中压 >2.5~8.0 MPa(>25~80Kgf/cm^2);

中高压>8.0~16MPa(>80~160Kgf/cm^2);

高压>16~32MPa(>160~320Kgf/cm^2);

超高压>32MPa( >320Kgf/cm^2);

3)液压油的选择:

工作介质和润滑剂。要求:适当的粘度、良好的黏温特性、良好的润滑性,抗氧化,无腐蚀作用,抗燃烧,不宜乳化,不破坏密封材料,无毒,有一定的消泡能力等。

液压油的选择,应根据泵的类型、工作温度、系统压力等情况,确定使用粘度范围,在选择合适的液压油品种。(泵对应的液压油粘度范围可查相关资料获得。)

液压油的牌号,是这种油液在40℃时的运动黏度(mm^2/s)的平均值。

运动黏度的法定计量单位是m^2/s。在CGS制(厘米克秒单位制)中,?的单位是cm^2/s,通常称为St(斯)。1St(斯)=100cSt(厘斯)。两种单位制的换算关系为:

1m^2/s=10^4St=10^6cSt

相对黏度又称条件黏度。它是采用特定的黏度计在规定的条件下测得的液体黏度。我国、德国及前苏联等国采用恩氏黏度°E,而美国则采用国际赛氏秒(SSU)等。

一般以20℃、50℃、100℃作为测定恩氏黏度的标准温度,由此而得来得恩氏黏度分别用°E20、°E50、°E100表示。

4)基本液压回路:

一般而言,能够实现某种特定功能的液压元件的组合,称为液压回路。为了实现对某一机器或装置的工作要求,将若干特定的基本功能回路连接或符合而成的总体称为液压系统。

(1)调压回路(调压回路、比例溢流阀调压回路、远程调压回路、双压回路、多级压力回路);

(2)减压回路(用减压阀的回路、二级减压回路);

(3)增压回路(气液增压回路、串联液压缸增力回路);

(4)卸载回路(换向阀卸荷回路、溢流阀卸荷回路、双联泵回路);

(5)调速回路(进口节流回路(有2种)、出口节流回路(有2种)、比例调速回路、变量泵调速回路、变量马达调速回路);

(6)速度变换回路(用蓄能器的增速回路、差动连接的回路、用行程阀的减速回路、采用特殊结构液压缸的回路);

(7)换向回路(用电磁阀或电液阀换向回路);

(8)缓冲回路(用行程减速阀的回路);

(9)同步回路(活塞杆机械固结的回路、用调速阀的同步回路、采用分流阀的同步回路);

(10)顺序动作回路(用行程开关控制的回路)。

注:用图形符号绘制的液压系统图并不表示各元件的具体结构及其实际安装位置和管路布置。

5)液压系统的组成及分类:

液压系统主要由动力部分(原动机(电动机或内燃机)和液压泵)、控制部分(包括压力控制阀、流量控制阀、方向控制阀等)、执行部分(液压缸、液压马达和摆动液压马达)、辅助部分(油箱、管件、过滤器、蓄能器、换热器以及各种控制仪表等)、液压工作介质(各类液压油)这五部分组成。

液压系统的分类:

1)按油液循环方式分类:开式系统和闭式系统;

2)按工作特征分类:液压传动系统和液压控制系统;

3)按执行器速度控制与调节方式分类:阀控系统、泵控系统、执行器控制系统;

4)按主换向阀在中位时液压泵的工作状态分类:中开式系统和中闭式系统;

5)按用途分类:固定设备用系统和行走设备用系统。

开式系统与闭式系统:

(1)开式系统:这种系统液压泵从油箱吸油,执行器回油返回油箱。系统需要较大容积的油箱。这种系统应用最为普遍。

(2)闭式系统:闭式系统中,执行器排出的油液返回到泵的进口。系统效率较高,需要补油泵补油,并用冲洗阀换油,进行热交换。这种系统多用于车辆、起重运输机械、船舶绞车、造纸和纺织等机械设备中。

6)常见机械液压系统的工作压力:

液压系统的工作压力一般按机械设备的功率大小选择:小功率(<15kW)工作压力,可选<6.3~7.0MPa;大功率可选7.0~31.5MPa。

例如:

(1)磨床:工作压力0.8~2MPa;

(2)组合机床:工作压力3~5MPa;

(3)冶金辅助设备、龙门刨床:工作压力2~12MPa;

(4)拉床:工作压力8~10MPa;

(5)农业机械、小型工程机械、工程机械辅助机构:工作压力10~16MPa;

(6)液压机、矿山机械、起重运输机械、重型机械:工作压力20~31.5MPa。

7)控制阀的选择:

控制阀的选择依据是额定压力、最大流量、动作方式、安装形式、压力损失、工作性能参数及工作寿命等。

流量控制阀(如节流阀、调速阀)根据系统工作压力、最大流量和最小稳定流量选取。

压力控制阀根据系统工作压力和最大流量选取;主溢流阀按系统工作压力和泵的最大流量选取。

方向控制阀根据系统工作压力和所需通过的流量,满足执行机构动作要求的控制机能进行选取。

一般选择控制阀的额定流量应比系统实际通过的流量稍大一些,必要时允许通过阀的最大流量超过其额定流量的20%。

气缸的选择、安装和维护注意事项

电磁阀结构原理、选型原则一篇搞定

根据工作要求和条件,正确选择气缸的类型。高温环境下需选用耐热气缸。在有腐蚀环境下,需选用耐腐蚀气缸。在有灰尘等恶劣环境下,需在活塞杆伸出端安装防尘罩。要求无污染时,需选用无给油或无油润滑气缸等。

1)气缸的选择:

首先选择标准气缸,其次才考虑自行设计。

气缸选择要点:

(1)气缸的类型:

根据工作要求和条件,正确选择气缸的类型。高温环境下需选用耐热气缸。在有腐蚀环境下,需选用耐腐蚀气缸。在有灰尘等恶劣环境下,需在活塞杆伸出端安装防尘罩。要求无污染时,需选用无给油或无油润滑气缸等。

(2)安装方式:

根据安装位置,使用目的等因素决定。

安装形式有:基本型,脚座型,杆侧法兰型,无杆侧法兰型,单耳环型,双耳环型,杆侧耳轴型,无杆侧耳轴型,中央耳轴型。

在一般情况下,采用固定式气缸。在需要随工作机构连续回转时(如车床、磨床等)应选用回转气缸。在要求活塞杆除直线运动外,还需作圆弧摆动时,则选用轴销式气缸。有特殊要求时,应选择相应的特种气缸。

(3)作用力的大小:

根据负载力的大小来确定气缸输出的推力和拉力。一般均安外载荷理论平衡条件所需气缸作用力再乘以系数1.5~2.0,使气缸输出力稍有余量。缸径过小,输出力不够,但缸径过大,使设备笨重,成本提高,又增加耗气量,浪费能源。在夹具设计时,应尽量采用扩力机构,以减小气缸的外形尺寸。

(4)活塞的行程:

与使用的场合和机构的行程有关,但一般不选用满行程,防止活塞和缸盖相碰。如用于夹紧机构等,应按计算所需的行程增加10~20mm的余量。应尽量选为标准行程,可保证供货速度,降低成本。

(5)活塞的运动速度:

主要取决于气缸输入压缩空气流量、气缸进排气口大小及导管内径大小。要求高速运动应取大值。气缸运动速度一般为50~1000mm/s。对高速运动的气缸,应选择大内经的进气管道;对于负载有变化的情况,为了得到缓慢而平稳的运行速度,可选用带节流装置或气一液阻尼缸,则较易实现速度控制。选用节流阀控制气缸速度时需注意:水平安装的气缸推动负载时,推荐用排气节流调速;垂直安装的气缸举升负载时,推荐用进气节流调速;要求行程运动平稳避免冲击时,应选用带缓冲装置的气缸。

(6)缓冲形式:

按照用途所需,选择出气缸的缓冲形式。气缸缓冲形式分为:无缓冲,橡胶缓冲,气缓冲,液压缓冲器。

(7)磁性开关:

安装于气缸上的磁性开关,主要是作位置检测之用。需要注意的是:气缸内置磁环,是使用磁性开关的先决条件。磁性开关的安装形式有:钢带安装,轨道安装,拉杆安装,真接安装。

2)安装使用:

(1)气缸正常的工作条件:工作压力0.4~0.6MPa,普通气缸运动速度范围是50~1000mm/s,环境温度5~60℃。在低温下,需采取防冻措施,防止系统中的水分冻结。除无给油和无润滑气缸外,应注意合理润滑,气动系统中应安装油雾器。

(2)气缸安装前,应经空载试运行及在1.5倍高于工作压力下试压,运转正常和无漏气现象方可使用。

(3)气缸接入管道前,必须清除管道内赃物,防止杂物进入气缸内。

(4)活塞杆横向载荷(日本JIS标准中规定),气缸允许承受横向载荷为气缸最大推力的1/20,因此,气缸安装时要防止气缸工作过程中承受横向载荷,从而保证气缸的正常工作和使用寿命。采用脚座式、法兰式安装时,应尽量避免安装螺栓本身直接受推力或拉力负荷。采用尾部悬挂中间摆动式安装时,活塞杆顶端的连接销位置与安装件轴的位置处于同一方向;采用中间轴销摆动式安装时,除注意活塞杆顶端连接销的位置外,还应注意气缸轴心线与轴托架的垂直度,同时,在不产生卡死的范围内,将摆轴架尽量靠近摆轴的根部。

(5)缓冲气缸在开始运行前,先把缓冲节流阀拧在节流量较小的位置,然后逐渐开大,直至调到满意的缓冲效果。

(6)不适用满行程,特别是当活塞杆伸出时,不要使活塞杆与缸盖相碰撞。否则,容易引起活塞杆和外部连接处的载荷集中。

(7)在行程中载荷有变化时,应使用输出力充裕的气缸,并附加缓冲装置。

3)气缸维护:

(1)使用中应定期检查气缸各部位有无异常现象,各连接部位有无松动等,发现问题及时检修,防止事故发生,销轴式安装的气缸等活动部位应定期加润滑油。

(2)气缸检修重新装配时,零件必须清洗干净,不得将赃物带入气缸内,特别需防止密封圈被剪切、损坏和注意动密封圈的安装方向。

(3)气缸拆下长时间不适用时,所有加工表面应涂防锈油,进排气口应加防尘堵塞。

滚珠丝杆的检查和维修的关键点是在哪?

电磁阀结构原理、选型原则一篇搞定

滚珠丝杆被广发应用于各个精密机械的运动中,因而一旦发生了故障,将会给自动化机械带来很大的损失。

但是在日常的作业中,滚珠丝杆的故障又是机器常见,且是多种多样的,没有固定的模式。有的故障是渐发性故障,要有一个发展的过程,随着使用时间的增加越来越严重;有时是突发性故障, 一般没有明显的征兆,而突然发生,这种故障是各种不利因素及外界共同作用而产生的。所以通过正确的检测来确定真正的故障原因,是快速准确维修的前提。

一、滚珠丝杠螺母副及支撑系统间隙的检测与修理

当数控机床出现反向误差大、定位精度不稳定、过象限出现刀痕时,首先要检测丝杠系统有没有间隙。检测的方法有:用百分表配合钢球放在丝杠的一端中心孔 中,测量丝杠的轴向窜动,另一块百分表测量工作台移动。正反转动丝杠,观察两块百分表上反映的数值,根据数值不同的变化确认故障部位。

1、丝杠支撑轴承间隙的检测与修理

如测量丝杠的百分表在丝杠正反向转动时指针没有摆动,说明丝杠没有窜动。如百分表指针摆动,说明丝杠有窜动现象。该百分表最大与最小测量值之差就是丝杠 的轴向窜动的距离。这时,我们就要检查支撑轴承的背帽是否锁紧、支撑轴承是否已磨损失效、预加负荷轴承垫圈是否合适。如果轴承没有问题,只要重新配做预加 负荷垫圈就可以了。如果轴承损坏,需要把轴承更换掉,重新配做预加负荷垫圈,再把背帽背紧。丝杠轴向窜动大小主要在于支撑轴承预加负荷垫圈的精度。丝杠安 装精度最理想的状态是没有正反间隙,支撑轴承还要有0.02mm左右的过盈。

2、滚珠丝杠双螺母副产生间隙的检测与维修

通过检测,如果确认故障不是由于丝杠窜动引起的。那就要考虑是否是丝杠螺母副之间产生了间隙,这种情况的检测方法基本与检测丝杠窜动相同。用百分表测量与螺母相连的工作台上,正反向转动丝杠,检测出丝杠与螺母之间的最大间隙,然后进行调整。

3、单螺母副的检测与维修

对于单螺母滚珠丝杠,丝杠螺母副之间的间隙是不能调整的。如检测出丝杠螺母副存在间隙。首先检查丝杠和螺母的螺纹圆弧是否已经磨损,如磨损严重,必须更换全套丝杠螺母。

如检查磨损轻微,就可以更换更大直径的滚珠来修复。首先检测出丝杠螺母副的最大间隙,换算成滚珠直径的增加,然后选配合适的滚珠重新装配。这样的维修是比较复杂,所需时间长,要求技术水平高。

4、螺母法兰盘与工作台连接没有固定好而产生的间隙

这个问题一般容易被人忽视,因机床长期往复运动,固定法拉盘的螺钉松动产生间隙,在检查丝杠螺母间隙时最高把该故障因素先排除,以免在修理时走弯路。

5、滚珠丝杠螺母副运动不平稳、噪音过大等故障的维修。

滚珠丝杠螺母副运动不平稳和噪音过大,大部分是由于润滑不良造成的,但有时也可能因伺服电机驱动参数未调整好造成的。

二、轴承、丝杠螺母副润滑不良

机床在工作中如产生噪音和振动,在检测机械传动部分没有问题后,首先要考虑到润滑不良的问题,很多机床经过多年的运转,丝杠螺母自动润滑系统往往堵塞, 不能自动润滑。可以在轴承、螺母中加入耐高温、耐高速的润滑脂就可以解决问题。润滑脂能保证轴承、螺母正常运行数年之久。

三、伺服电机驱动问题

有的机床在运动中产生振动和爬行,往往检测机械部分均无问题,不管怎样调整都不能消除振动和爬行。经仔细检查,发现伺服电机驱动增益参数不适合实际运行状况。调整增益参数后,就可消除振动和爬行。

怎样才能让滚珠丝杆一直保持高精度?

电磁阀结构原理、选型原则一篇搞定

滚珠丝杆因为具有定位精度高、高寿命、低污染和可做高速正逆向的传动及变换传动等特性,已成为近年来精密科技产业及精密机械产业的定位及测量系统上的重要零组件之一。滚珠丝杆是一种钢珠介于螺母与丝杆之间做运动,将传统丝杆的滑动接触转换成滚动接触然后在将螺母内的钢珠回转运动转为直线运动的传动机械机构。那么我们在使用过程中,如何让滚珠丝杆一直保持其高精度呢?

如何保持滚珠丝杆的精度

滚珠丝杆通常用于需要精密定位的场合。高的机械效率、低的传动扭矩和轴向游隙几乎为零, 使得滚珠丝杆成为刀具定位和飞机副翼驱动这类应用中的重要装置。然而, 阻力和由连续工作产生的热量可能引起很大的摩擦力和定位误差。

在滚珠丝杆里增加摩擦的设计因素也增加扭矩, 并且反过来影响定位精度。滚珠被压紧在滚珠丝杆螺母和丝杆轴之间时, 产生的楔效应是一个潜在的摩擦源。在正转的时候, 滚珠通常对着螺母挤压; 反转时,滚珠对着丝杆轴挤压。由于滑动摩擦系数比滚动摩擦系数大得多( 没动0.1~0.3;滚动0.001~0.003) ,楔效应大大增加了扭矩。

当滚珠丝杆轴在固定的角度内振动时, 挤压引起的扭矩特别麻烦。这种运动会引起振动扭矩, 既使用极精密的零件也很难完全消除。然而, 通过采用歌德式拱形而不采用圆弧形的滚珠沟槽或通过降低滚珠丝杆的刚度, 可以把这种扭矩减到最小量。歌德式拱形具有较深的流通性较好的V 形截面。

当两个滚珠丝杠螺母一起使用时, 通常用垫片隔开, 预紧力由垫片厚度确定。通过用蝶形弹簧代替实心垫片, 可以减小滚珠丝杆的扭矩, 这种弹簧允许有轴向变形从而减少了挤压。另一个主要的阻力源, 即相邻滚珠间的摩擦力, 可以通过拿掉几个滚珠或用隔离滚珠( 即有间隙的滚珠) 代替其中某些滚珠的方法来减少。采用这些方法, 摩擦产生的扭矩最多可减少30%。在降低滚珠及其滚道之间的摩擦力方面,同样的方法也是有效的。

为了最大限度地减少摩擦力, 隔离滚珠和承载滚珠应该相互交替。但是, 某些负载和刚度要求可能需要每三个承载滚珠用一个隔离滚珠。直径比承载滚珠稍小的隔离滚珠起惰轮的作用, 他们沿和承载滚珠相反的方向旋转, 并且减少接触摩擦。采用隔离滚珠或减少承载滚珠数目的一个不利的后果是降低了滚珠丝杆的承载能力, 这必须通过减少工作负载或增大滚珠丝杆尺寸来补偿。润滑引起的阻力也会增大摩擦扭矩, 尤其是在高速时, 大多数滚珠丝杆是在远低于5米/分的速度下使用。然而, 现代机床要求的速度大于10米/分, 有些系统应用的速度高达30米/分。产生最小阻力的润滑剂类型由滚珠丝杆轴向旋转速度确定。一般说来, 转速在500转/分以下或移动速度为3米/分时,用油脂润滑最好。在这种较低的速度下主要是边界润滑。转速超过500转/分, 主要是油体薄膜润滑, 油是最好的润滑剂。

热膨胀引起的定位精度降低不仅是由滚珠运动的摩擦热造成的, 而且也是由诸如液压流体、电动机、齿轮箱之类因素的机械运转热所造成的。如果在导轨或床身上产生了变形, 即使能够防止滚珠丝杆的温升, 也不可能获得高的精度。在分析精度的时候, 来自所有这样的热源的热都必须加以考虑。

在计算由滚珠丝杆本身产生的热量时, 高的工作负载是一个最大的潜在原因。通常, 工作负载大约是滚珠丝杆顶紧力的3 倍。更大的负载必须通过增大所用的滚珠丝杆装置的尺寸或通过更大的润滑剂冷却能力来补偿。补偿热膨胀的一种方法是对滚珠丝杆施加一种预紧力。这是通过把丝杆轴加工成负公差尺寸来实现的。用这种方法使螺矩稍微缩短,在装配时使滚珠丝杠螺母受到压缩。在工作温度下丝杆膨胀装置就正常工作。

在温度极高的情况下, 可将单独的冷却系统装进滚珠丝杆, 将空气或油雾喷在丝杆轴上。通常, 空气冷却更为有效, 并且不会象那样损耗。冷却也可以通过使压力水通过空心轴滚珠丝杆的方法来进行,采用这样的系统, 滚珠丝杆的温度几乎不会升高。

滚珠丝杠的正确使用方法

(1)请绝对不要拆卸滚珠丝杆。否则,容易导致灰尘的进入,使精度下降或导致故障。

(2)由于重新组装容易因组装错误而使滚珠丝杠丧失功能,所以不要重新进行组装。

(3)滚珠丝杠轴或螺母有时会因自重而脱落,请注意不要受伤。不慎摔落时可能会因轨道的碰伤或循环零部件的损伤导致产品功能的丧失。

(4)如循环零部件、轴的外径、轨道等出现伤痕、损伤等现象时,就会造成循环不良,从而导致产品丧失功能。

滚珠丝杠的保护

滚珠丝杠副可用润滑剂来提高耐磨性及传动效率。润滑剂分为润滑油和润滑脂两大类。润滑油用机油、90~180号透平油或140号主轴油。润滑脂可采用怪基油脂。润滑脂加在螺纹滚道和安装螺母的壳体空间内,而润滑油通过壳体上的油孔注入螺母空间内。

滚珠丝杠副和其他滚动摩擦的传动元件,只要避免磨料微粒及化学活性物质进入,就可以认为这些元件几乎是在不产生磨损的情况下工作的。但如果在滚道上落入脏物,或使用肮脏的润滑油,不仅会妨碍滚珠的正常运转,而且会使磨损急剧增加。

电缸与气缸的成本比较

电磁阀结构原理、选型原则一篇搞定

电缸推杆虽然在运动控制应用上有很多特点,但其性价比到底如何呢?其与传统的流体动力直线缸,在总体使用成本上应该如何比较评估呢?

这回我们就以气缸为例简单分析下。

我们会从元器件、系统设计、设备组装以及生产运营几个方面进行比较。

元器件

执行机构

从执行机构组件看,气动系统中与气缸配合的主要是电磁阀和过滤器、减压阀等元件,而其功率输出源为压缩机气泵,分摊到每个轴的成本是较低的。而电缸系统的每个轴都需要一台伺服驱动器作为功率单元输出。在这一点上,伺服电缸和驱动器系统的硬件成本显然是较高的。

控制设备

从控制组件来看,无论气动系统还是电缸伺服系统都需要用到PLC等控制器。

气动系统需要通过继电器来实现对气缸电磁阀的控制,而若要实现一些复杂的运动控制,气动系统还需要使用额外的传感器。

而电缸系统通过上述的伺服驱动器就已经可以实现各种运动功能,无需额外控制组件。

系统设计

硬件

硬件方面,气动系统的元器件较多,系统较为复杂,因此其硬件设计时间和成本都是偏高的。

而电缸系统结构则非常简单,元件类型仅仅是缸、驱动器和控制器,因此其硬件系统集成相对简单。

软件

从应用的角度看,很难分辨二者的差距,因为这个非常取决于其应用状况。

系统组装

机械

在气动系统的组装过程中,由于涉及元件数量较多,因此安装组装的工作量较大,除了需要安装气缸,还需要安装电磁阀、过滤器以及减压阀等等,有时还需要考虑传感器元件的安装。

而在使用电缸时,只需要安装电缸即可,其推杆附件与传统的气缸是一致的,除此以外,只需将其动力和反馈通过快插线缆连接到驱动器即可。

布线

气动系统布线时,需要布置电磁阀线缆,阀岛开关和气体管路,如果需要位置反馈,还需要考虑位置传感器布线。

电缸系统布线,仅仅需要考虑电机动力和反馈线缆。

盘柜

另外,气动系统的柜体集成成本也会略高,原因也在于其系统组件类型较多,而电缸系统的柜内组件仅为普通的伺服驱动器。

生产运营在生产运营中,两种产品最大的差别在于其系统的能耗成本。

之前谈过,由于气缸的动力须通过气压作为中间介质,且在运行过程中存在泄露的问题,因此其能耗效率是不高的;而电缸的动力是通过电能直接转换成机械能的,其能耗效率较高。

关于运行能耗的计算,可以参考下面的算式:

气缸的能耗成本= 动作一次的压缩空气用量 x 动作次数 x 压缩空气能源单价

电缸的能耗成本=动作一次的耗电量 x 动作次数 x 电费单价

从上面的分析看,电缸虽然其硬件购买成本较高,但是其在设计、组装和运营上却可以有不少节省,尤其是在系统能耗上面。

而至于电缸的性价比到底如何,我想今天仅仅是为大家提供了一个分析和评估的方法,孰优孰劣还得看实际案例的分析数据说话。

发动机气缸垫烧蚀的原因及注意事项

电磁阀结构原理、选型原则一篇搞定

气缸垫主要是用来保证气缸体与气缸盖接合面间的密封,防止漏气、漏水。气缸垫直接接触高温、高压的燃气,所以在使用中很容易被烧蚀,特别是缸口卷边周围。气缸垫烧损后会使发动机的工作状况严重恶化,还很容易造成某相关零部件或部位的损伤。

如何判断气缸垫烧损以及怎样解决!

气缸垫烧蚀的原因

(1)气缸垫拧紧力不均或紧定方法不正确使缸垫没有平整地在缸体与缸盖的接合面上导致窜气。

(2)缸盖翘曲变形,缸体平面不平度过大及缸盖螺旋松动导致密封不严。 汽修老板内参微信:qixiulaoban

(3)驾驶操作方法不当,习惯猛加油门和急加速、高速运行,过大的压力加剧缸垫冲蚀。

(4)发动机经常在大负荷、点火过早、发动机过热、爆震等情况下运行,导致缸内局部高温高压而烧蚀缸垫。

(5)喷油正进过早;燃烧室积炭严重;柴油选用不当。

(6)缸垫质量较差、厚薄不均;包口内存有气泡,石棉铺设不均或包边不紧。

缸垫烧蚀故障现象

1、相邻两缸过梁处烧损现象:发动机运转中动力突然下降,转速明显降低;机体抖严重且排气管有轻微放冤屈现象;发动机熄火后启动困难或怠速 时极不稳定。

2、气缸口与冷却水道之间烧损现象:发动机运转时,水温突然升高,且转速沉闷,动力下降,冷却水消耗过快;排气管有水气排出,特别是怠速运转时,排出的废气呈淡黄色现象;曲轴箱油平面升高,润滑油乳化现象严重;散热器加水口处有水锈痕迹。若烧损严重时,大量的冷却水会进入气缸,造成发动面无法启动。汽修老板内参微信:qixiulaoban

3、气缸口与润滑油道之间烧损。现象:机油压力不稳定以及油温升高过快;润滑油中有气泡,颜色变浅并有柴油味,润滑氧化变质速度以及消耗过快;柴油机低温时,排气管有大量的蓝烟排出。

4、气缸口与气垫边缘之间的烧损。现象:烧损轻微时,表现为发动机动力下降,加速迟缓,特别是大负荷时尤为明显,怠速时转速不稳且机体抖动严重;若烧损严重时,在气缸的中上部能察听出有节奏的“嚓,嚓”声。

5、气缸口与气缸盖螺栓孔之间烧损现象:发动机怠速不稳;气门罩盖处有轻微的“嚓,嚓”声;气缸螺栓(母)经常松动。

缸垫途中烧蚀急救措施

行车途中发现缸垫烧损,又无备件时可采取以下急救措施:缸垫拆下来认真检查,若是冲坏一道小口,可用烟盒内包装锡纸、电器内锡废容铂或石棉线等物填补在冲坏处,并仔细敲平压实即可;若冲坏面较大时,可用干牛皮垫或从废缸垫相同部位剪下一块贴补代用,车辆回场后重新按技术规范修复。缸垫的使用维护使用中,缸垫应在高温高压气体作用下,有足够的强度,不易损坏:还要具有耐热、耐腐蚀特性;有一定弹性,能补偿接合面的平面度,具有良好的密封性;拆装方便不粘缸及使用寿命长。目前广泛使用的是石棉缸垫,其结构为石棉中间夹有金属丝,水孔周围用铜皮镶边,燃烧室孔铜皮镶包,以防高温烧蚀。汽修老板内参微信:qixiulaoban

安装维护时的注意事项

1、拆卸缸盖螺栓更换缸垫,必须在发动机完全冷却之后进行,以免缸盖挠曲变形。

2、检查缸垫表面有无凹陷、凸起、破损等;检查缸盖和缸体平面度是否符合要求,然后将缸垫、缸盖和缸体清洗干净,用高压空气吹干,以免脏物影响密封。

3、选用的缸垫必须是符合要求(规格型号)质量可靠的原厂配件,安装注意其上下朝向标记,以防装反,避免人为故障。

4、按技术规范拧紧缸盖螺栓,由于中央向两头对称扩展交叉进行,分2~4次拧至规定的扭力;再在热车状态下紧固一次更为可靠。

5、缸盖螺栓锈蚀拆不下来,千万不要用铁器硬撬,以免损坏缸盖,可往缸盖螺孔中注煤油浸泡片刻,即可顺利拆下。

6、缸盖保管不妥、拆装不慎、缸垫破损变形,安装时清洗不净将导致工作不良、密封不严而造成人为故障必须引起重视。

更换气缸垫时,要耐心细致严格地按技术标准操作,特别是要严格按照发动机厂家规定的顺序、扭紧力矩及扭紧方法去紧固缸盖螺栓。只有这样,才能保证气缸垫的高质量的密封。同时要分析气缸垫烧蚀的原因,有针对性地排除相关的故障,改进设备的操作方法,避免野蛮操作,以有效延长气缸垫的使用寿命。

发动机气缸异响的6种常见原因及解决技巧

电磁阀结构原理、选型原则一篇搞定

发动机汽缸内的异响可归纳为活塞敲缸声、活塞销敲击声、活塞顶撞击缸盖声、活塞顶撞击声、活塞环敲击声、气门敲击声及汽缸爆震声等几种。

1、活塞顶与汽缸盖的撞击声

活塞顶撞击汽缸盖的异响为“嗒嗒嗒”连续不断的金属敲击声,高转速时尤为明显。其异响声源在汽缸上部,其声音坚实有力,且汽缸盖有震动。其主要原因有以下几种。

(1)曲轴轴承、连杆轴承及活塞销孔严重磨损,配合间隙严重超标,在活塞行程变换的瞬间,活塞在惯性力的作用下,顶部撞击汽缸盖。

(2)因更换活塞时误装其他类似规格的活塞,或伪劣产品,其活塞销孔中心线至活塞顶面的距离大于原活塞,使活塞到达上止点时,由于超高而碰撞汽缸盖。

在行驶途中,若遇到此类情况,急救办法是,卸下汽缸盖,加上一个汽缸垫,使缸盖升高而不致再发生碰撞。但有修理条件时,应立即进行修理,恢复其良好的技术状态。

2、活塞环部位的异响

活塞环部位的异响主要有活塞环的金属敲击声、活塞环的漏气响声及积碳过多引起的异常响声。

(1)活塞环的金属敲击声响。发动机长期工作后,汽缸壁遭到磨损,但汽缸壁上部与活塞环接触不到的地方却几乎保持着原几何形状与尺寸,这就使汽缸壁生成了一个台阶。如果用的是旧缸垫或是更换的新缸垫偏薄,工作中的活塞环就会与缸壁台阶相碰撞,发出一种钝哑的“噗噗”的金属碰击声。若发动机转速升高,该异响也会随之增大。另外,若活塞环折断或活塞环与环槽间隙过大,也会引起较大的敲击声。

(2)活塞环的漏气响声。活塞环弹力减弱,开口间隙过大或开口重叠,汽缸壁拉有沟槽等均会造成活塞环漏气。其声响为一种“喝喝”或“嘶嘶”声,严重漏气时则发出“噗噗”的声音。其诊断方法是,在发动机水温达到80℃以上时熄火,这时可向缸内注入少许新鲜干净的机油,摇转曲轴数圈后,重新启动发动机,此时若异响消失,但不久后又出现,则可断定为活塞环漏气。更多干货,关注公众号:汽修e族

(3)积碳过多的异常响声。积碳过多时,缸内传出的异响是一种尖锐的声音,由于积碳被烧红,发动机有点火过早的症状,而且不易熄火。活塞环部位积碳的形成,主要是由于活塞环与汽缸壁密封不严,开口间隙过大,活塞环装反,环口重合等原因,造成润滑油上窜,高温高压气体下窜,在活塞环部位燃烧,致使形成积碳甚至粘住活塞环,使活塞环失去弹性与密封作用。一般更换规格合适的活塞环后,此故障即可排除。

3、敲缸声

敲缸,指的是活塞在工作行程开始的瞬间,或者是活塞上行时,活塞在汽缸内产生的摆动,其头部和裙部与汽缸壁相碰撞而发出的“当当”或“嗒嗒”的异常声响。如果是“当当”声响,多为汽缸壁润滑不良所引起,此时可向缸内滴入少许机油,再启动发动机,若异响减轻或消失,即说明异响确为润滑不良造成的。如果是“嗒嗒”声响,同时排气管冒蓝烟,一般是由于活塞与汽缸壁间隙过大的缘故。产生上述情况的主要原因有以下几方面:

(1)若只在冷车启动后有这种现象。运转达正常水温时即自行消失,是因为活塞与缸壁配合间隙偏大,冷车时活塞又有收缩,使两者配合间隙进一步增大,从而出现明显的敲击声。机温升高后,活塞膨胀,间隙趋于正常值,故异响消失。这种情况短期内不会出现大的问题。

(2)机油牌号与要求不符,发动机在熄火较长时间后,再次启动时,机油黏稠,流动性差,短时间内汽缸壁上不能形成良好油膜,活塞与缸壁直接相碰撞而产生敲缸。在运转一段时间后,润滑油黏度正常,缸壁上形成一层油膜,异响则减弱或消失。只要合理选用润滑油,并在启动前对发动机曲轴箱进行预热,用混合油润滑,则在启动前多踩几次启动杆,以使机件粘附更多的润滑油,此种情况即可避免。

(3)进入汽缸的混合气不能正常燃烧,产生早燃或爆燃,或者发动机无负荷时猛加油门的瞬间,均会产生活塞与汽缸壁碰击的声响。应保持发动机在正常温度下工作,采用符合辛烷值要求的汽油,并适当调整点火时间。

(4)活塞裙部磨损、圆柱度误差过大,活塞上行时,其顶部会撞击汽缸壁,活塞与汽缸严重磨损,两者之间间隙过大,活塞会在汽缸内摆动,引起其裙部撞击汽缸壁。可分解后进行检查,根据情况采取相应的修理措施。

(5)因连杆弯扭,活塞销与销孔偏斜,曲柄销与活塞销两轴心线不平行等,也会引起活塞在缸内偏斜运行而撞击汽缸壁。这种情况只能分解后进行检查,确诊后更换相应机件。

4、活塞销的敲击声响

活塞销与活塞销孔、活塞销与连杆小头衬套(或轴承)间隙过大,则会发出一种尖锐、清脆、音调甚高的“嗒嗒嗒”的金属敲击声,类似用小手锤敲击铁钻的声。其规律是发动机冷车启动时不响,温度升高后则发响,且温度越高越响。若将点火时间前调,声响则加快并加大。若使火花塞断火,响声则减弱或消失。

有的发动机不仅活塞销与销孔间隙大,活塞销与连杆小头衬套(或轴承)间隙也大,这种情况下发出的敲击声音比较复杂,会出现连续的“嗒嗒”响声。更多干货,关注公众号:汽修e族   造成此故障的原因除工作中的磨损使间隙变大外,装配中由于活塞销、活塞销孔与连杆小头衬套三者材质分别为钢、铝、铜,其膨胀系数差异很大,稍有马虎,工作中三者间隙就会因受热膨胀不一而变大,造成相互间的撞击。而且,当间隙增大后,活塞销的轴向窜动量亦随之增大,销的圆柱端面会撞击销环,又增加了汽缸内的一种异响。

5、气门的异响

(1)排气门漏气的异响,可在排气管消声器处听到,如轮胎严重漏气时的“唏唏”声。气门漏气可在化油器上口空气过滤器处听到,其声音如幼儿打口哨时的“嘘嘘”声。原因是气门与座圈的工作面严重磨损或烧蚀,出现凹槽和斑点,不能严密封闭。有的则是因为气门杆与导管间隙过大或气门杆弯曲,使气门头不能居中而歪斜,造成漏气。若气门弹簧弹力减弱或折断,则气门不能与座圈工作面紧密贴合,也会造成漏气。从装配方面来说,若气门杆与导管间隙过小,工作中受热膨胀而被卡死,或是气门间隙调得过小,气门杆受热伸长而被挺杆或摇臂顶开气门,均会使气门不能完全关闭而漏气。

(2)气门弹簧折断时的异常响声因气门安置方式而异。侧置式气门弹簧折断后,工作时发出“嚓嚓”的响声,若拆下气门室盖会听得更清晰。顶置式气门弹簧折断后,气门自动下沉,会与活塞发生撞击,并出现“当当”的敲击声。后者若不及时熄火,会造成顶烂活塞、折断连杆,甚至更为严重的损失。

(3)气门积碳过多也会引起异常响声,因为积碳过多,碳层呈炽热状,活塞温度高,活塞环槽、活塞销孔的间隙增大,从而发出一种“喋喋”的异响。该故障往往伴有机温过高、发动机不易熄火或不能熄火等现象。其原因是混合油中机油比例超标或油底壳机油大量窜入燃烧室,应进一步查明具体原因并予以排除。

6、燃烧室发出的异响

当发动机负荷增加时,有的发动机从汽缸部位发出“嗒嗒”的声响,与正常运转时的声响有所不同,甚至还伴有加速性能变差的现象。这种异响音量较大,在距发动机5-6m处都可听到,在突然加速时异响尤为明显,即可把它视为发动机爆震的征兆。当可燃混合气在汽缸内过快燃烧时,其瞬间释放出大量的热量,导致汽缸内压力急剧升高,高压气体强烈地冲击着活塞顶、汽缸盖和汽缸壁,引起爆震。产生爆震的主要原因有,发动机过热,点火时间过早,燃烧室内积碳过多,汽油的辛烷值过低,所用火花塞热值偏低,不符要求等。

气液增压缸和气缸、液压缸及伺服电动缸等产品优劣势说明

很多客户对于气液增压缸、气缸、液压缸及伺服电动缸这类执行元件并不是很清楚它们的区别,优劣势都是什么,以至于并不是很清楚自己要选哪种产品,下面玖容厂家为你一一解答,希望能对大家在选型上有所帮助。

增压缸和气缸、液压缸及伺服电动缸等产品优劣势说明

1、气液增压缸:增压缸为气推油,气液结合的产品,为代替气缸和液压缸的节能环保产品,优劣势分别如下:

优势:压缩空气驱动气源取得方便,无需液压系统,无油压升温困扰,产品结构简单紧凑,出力大(1~200吨),速度快运作平稳低噪音,出力及速度易调整,运动可做稳速及增压装置的配合,易操作易清洁易维护,无泄漏,节能环保,产品价格相对油压设备低廉。

劣势:出力行程有一定限制。

2、气缸:气缸的出力一般都比较小,产品优劣势分别如下:

优势:动力来源取得方便,压力小,操作温度低,易操作易搬运,传动速度快,产品价格低廉。

劣势:出力较小,噪音大,无法稳速运动。

3、液压缸:液压缸又叫油缸,产品优劣势分别如下:

优势:一般需要搭配液压站使用,出力大,出力及速度易调整,可做稳速和变速运动,传动自由度高。

劣势:设备笨重难搬运,配管复杂,结构复杂难清洁难维护,维护成本高,耗能高,噪音大,油污大,有漏油的可能性,有污染的麻烦,液压循环油易升温影响油缸。

4、伺服电动缸:伺服电缸简称电缸,产品优劣势分别如下:

优势:无需气源或液压站,只需要接普通交流电即可控制,具体控制方法如PLC自动化编程控制等等,和前面的增压缸在控制上有很多共性。行程长,速度快,精度高(0.01mm左右),可精确位置控制,精确速度控制等等。

滚珠丝杆的安装及空隙调节方法

直线模组核心部件,滚珠丝杆介绍。

滚珠丝杆副是在丝杆和螺母之间以滚珠为滚动体的螺旋传动元件,它是一种精密、高效率、高刚度、长寿命的先进传动元件,可将自身的旋转运动转化为工作台的直线运动,因其特性被广泛应用在机械制造,特别是数控机床及加工中心上,为主机的高效高速化提供了良好的条件。

电磁阀结构原理、选型原则一篇搞定

调整滚珠丝杆间隙的方法主要有以下三种方法:

1、垫片调隙式:

通常用螺钉来连接滚珠丝杆两个螺母的凸缘,并在凸缘间加垫片。调整垫片的厚度使螺母产生轴向位移,以达到消除间隙和产生预拉紧力的目的。这种结构的特点是构造简单、可靠性好、刚度高以及装卸方便。但调整费时,并且在工作中不能随意调整,除非更换厚度不同的垫片。

2、螺纹调隙式:

其中一个螺母的外端有凸缘而另一个螺母的外端没有凸缘而制有螺纹,它伸出套筒外,并用两个圆螺母固定着。旋转圆螺母时,即可消除间隙,并产生预拉紧力,调整好后再用另一个圆螺母把它锁紧。

3、齿差调隙式:

在两个螺母的凸缘上各制有圆柱齿轮,两者齿数相差一个齿,并装入内齿圈中,内齿圈用螺钉或定位销固定在套筒上。调整时,先取下两端的内齿圈,当两个滚珠螺母相对于套筒同方向转动相同齿数时,一个滚珠螺母对另一个滚珠螺母产生相对角位移,从而使滚珠螺母对于滚珠丝杆的螺旋滚道相对移动,达到消除间隙并施加预紧力的目的。

随着数控机床和加工中心工作精度要求的日益提高,滚珠丝杆副的高精度化成为发展的必然趋势,在主机上的安装精度也逐渐成为装配中的突出问题,为了达到机床坐标位置精度的要求,减少丝杆绕度,防止径向和偏置载荷,减少丝杆轴系各环节的升温与热变形,最大限度的减轻伺服电机的传动扭矩并提高机床连续工作的可靠性,就必须提高滚珠丝杆副在机床上的安装精度。

滚珠丝杆副常用的安装方式通常有以下几种:双推-自由方式;双推-支承方式;双推-双推方式。

大型卧式加工中心,是具有高性能、高刚性和高精度的机电一体化的高效加工设备,是加工各类高精度传动箱体零件及其他大型模具的理想加工设备。它的三个坐标方向均采用伺服电机带动滚动丝杆传动,三个坐标方向,即X、Y、Z的工作行程较大。

由于滚珠丝杆副的结构特点,使主机上三个方向的滚珠丝杆副的安装变得特别关键。

按照传统的工艺方法,安装滚珠丝杆一直沿用芯棒和定位套将两端支承轴承座及中间丝母座连接在一起校正、用百分表将芯棒轴线与机床导轨找正平行并令芯棒传动自如轻快的方法。

这种安装方法在三个坐标方向行程较小的小型数控机床和加工中心上应用较方便。

由于芯棒与定位套、定位套与两端支承的轴承孔以及中间的丝母座孔存在着配合间隙,往往使安装后的支承轴承孔和丝母座孔的同轴度误差较大,造成丝杆绕度增大、径向偏置载荷增加、引起丝杆轴系各环节的温度升高、热变形变大和传动扭矩增大等一系列严重后果,导致伺服电机超载、过热,伺服系统报警,影响机床的正常运行。

另外,两端轴承孔与中间丝母座孔的实际差值无法准确测量,从而影响进一步的精确调整。对于三个坐标方向行程较大的数控机床和加工中心,由于所需芯棒多在1500mm以上,加工困难,不易保证精度,因此无法采用芯棒与定位套配合的找正方法进行滚珠丝杆副的安装。

在生产某型卧式加工中心时,由于机床的三个坐标行程较大,采用传统工艺方法安装的过程中,由于两端轴承孔与中间丝母座孔同轴度超差,造成滚珠丝杆径向和偏置载荷增加,经常出现伺服电机超载、过热,伺服系统报警等现象,使机床无法连续运行,同时严重影响滚珠丝杆的使用寿命和传动精度,缩短了主机的维修周期。

利用其他装配方法,如采用移动滑鞍,缩短丝母座与轴承座的距离,将丝母座与两端轴承座分别找正的方法,由于需要两段分别找正,加上检棒和检套的配合间隙,实际应用效果也不理想,同样存在上述问题。

通过对该产品的现场技术攻关,经过多次反复的摸索与生产验证,总结出一条比较可靠的装配工艺方法。

首先,采用整体式专用芯棒将丝母座孔校正,使其与基准导轨的正、侧向平行度在0.01/1000以内;把丝母座固定后,采用专业测量夹具实际测量出丝母座孔距基准导轨的正、侧向距离;然后,同样采用整体式专用检棒将轴承孔与基准导轨的正、侧向平行度找正在 0.01/1000以内,采用专用测量夹具实际测量出轴承孔距基准导轨的正、侧向距离,要求丝母孔与基准导轨正、侧向距离一致,允差为0.01;将轴承座固定。这种方法采用整体式专用检棒,不仅长度短小,而且将芯棒和定位套合二为一,消除了芯棒与定位套之间的配合间隙,可靠保证了轴承孔、丝母座孔与导轨的平行度;通过实际距离的测量,使两端轴承支承孔与丝母座孔的同轴度也得到了可靠的保证,这样就降低了滚珠丝杆副的绕度和径向偏置载荷,提高了丝杆副的安装精度。

另外,在安装滚珠丝杆的过程中,必须严格控制滚珠丝杆的轴向窜动量,此项技术指标将直接影响滚珠丝杆支撑座进给系统的传动位置精度。

根据现场实际验证表明:首先,要将安装伺服电机端的轴承座内的轴承装配好,其在滚动丝杆传动过程中起主要作用,将滚珠丝杆的轴向窜动量控制在0.015~0.02之间;

然后,再将另一端轴承座内的轴承装配好,使轴向窜动量控制在0.01 以内。这样就能有效保证滚珠丝杆进给系统的刚度和精度。

滚珠丝杆轴的预拉伸也是非常必要的。

为了提高滚珠丝杆进给系统的刚度和精度,给丝杆轴实施预拉伸是非常有效的,但由于丝杆轴的各断面不同,而温升值又不易精确设定,所以按有关文献计算得出的预拉力只能作为参考量。

在生产中常常是把具有负值方向的目标值的丝杆轴进行预拉伸,使机床工作台的定位精度曲线的走向接近水平。

在生产中,通过采用上述新工艺方法装配的某大型加工中心的三个坐标方向的滚珠丝杆的空载扭矩均明显降低,空载电流也显著减小,伺服电机及伺服系统工作正常,未出现三个坐标方向的伺服报警,机床可连续运行72h以上。

上述结果充分说明采用新工艺方法,能有效保证滚珠丝杆副的安装精度,另外,该方法还不受机床行程大小的限制。机床行程越大,越能突显其优势,为大型数控机床和加工中心滚珠丝杆副的安装提供了一种有效且可靠的方法。

电磁阀不能正常动作的原因及处理

电磁阀多用在气体、液体压力系统中,是用电磁驱动的工业设备或装置,是用来控制流体的自动化基础元件,属于执行器,并不限于液压、气动。用在工业控制系统中调整介质的方向、流量、速度和其他的参数。电磁阀的故障将直接影响到切换阀和调节阀的动作,最常见的故障是电磁阀不动作,应从以下几天方面排查:

一、漏气。漏气会造成空气压力不足,使得强制阀的启闭困难,原因是密封垫片损坏或滑阀磨损而造成几个空腔窜气。在处理切换系统的电磁阀故障时,应选择适当的时机,等该电磁阀处于失电时进行处理,若在一个切换间隙内处理不完,可将切换系统暂停,从容处理。

电磁阀结构原理、选型原则一篇搞定

二、电磁阀卡住。电磁阀的滑阀套与阀芯的配合间隙很小,一般都是单件装配,当有机械杂质带入或润滑油太少时,很容易卡住。处理方法可用钢丝从头部小孔捅入,使其弹回。根本的解决方法是要将电磁阀拆下,取出阀芯及阀芯套,进行清洗,使得阀芯在阀套内动作灵活。拆卸时应注意各部件的装配顺序及外部接线位置,以便重新装配及接线正确,还要检查油雾器喷油孔是否堵塞,润滑油是否足够。

三、电磁阀接线头松动或线头脱落,电磁阀不得电,可紧固线头。其二是由于线路过长或其它原因导致线路压降过大,无力拉动阀芯。其三,线路损伤,造成断路,电磁阀没电。处理时应通过检测电压、观察信号灯,判断故障原因,然后处理。

四、电磁阀线圈烧坏,可拆下电磁阀的接线,用万用表测量,如果开路,则电磁阀线圈烧坏。原因有线圈受潮,引起绝缘不好而漏磁,造成线圈内电流过大而烧毁,因此要防止雨水进入电磁阀。此外,弹簧过硬,反作用力过大,线圈匝数太少,吸力不够也可使得线圈烧毁。紧急处理时,可将线圈上的手动按钮由正常工作时的“0”位打到“1”位,使得阀打开。

五、阀芯弹簧失效

在阀芯弹簧失效时,由于弹力变小,即使电磁阀失电,阀芯也不能复位。一般是油的粘度大、卡阀等综合作用的结果,此时应当加温稀释液压油,并清洗阀件,更换弹簧,必要时重新对液压油进行过滤。

由于对电磁阀的认知有限,定会有不适之处,敬请批评指正。

电磁阀的故障与维修

电磁阀结构原理、选型原则一篇搞定

电磁阀常见的故障有电磁阀不动作,应从以下几方面排查:

(1)电磁阀接线头松动或线头脱落,电磁阀不得电,可紧固线头。

(2)电磁阀线圈烧坏,可拆下电磁阀的接线,用万用表测量,如果开路,则电磁阀线圈烧坏。原因有线圈受潮,引起绝缘不好而漏磁,造成线圈内电流过大而烧毁,因此要防止雨水进入电磁阀。此外,弹簧过硬,反作用力过大,线圈匝数太少,吸力不够也可使得线圈烧毁。

(3)电磁阀卡住。电磁阀的滑阀套与阀芯的配合间隙很小,当有机械杂质带入或阀体生锈时,很容易卡住。根本的解决方法是要将电磁阀拆开,取出阀芯及阀芯套,用CCI4清洗,使得阀芯在阀套内动作灵活。拆卸时应注意各部件的装配顺序及外部接线位置,以便重新装配及接线正确。

(4)如果是先导式电磁阀,要检查管道内压差是否太小,压差太小电磁阀就不能正常工作,在这种情况下,就需选用直动式电磁阀。而压差太大,远远超出电磁阀的设计值,也无法正常工作,此时就要用高压电磁阀了。

(5)管道内的污物堵住了先导阀的小孔,致使先导阀无法正常打开,主阀也就不能及时打开了。可以把阀体拆开,洗净污物,重新装配,即可正常工作。

(6)另外,电磁阀一般都是水平安装,如果是侧装的话,有可能造成阀门关闭不严,即内漏,应尽量避免侧装。

电磁阀选型原则、结构、原理特点图解

选择电磁阀的原则

电磁阀的种类有很多种,国内外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式。如何选择你所需要的呢,需要考虑以下几点:

一:适用性

管路中的流体必须和选用的电磁阀系列型号中标定的介质一致。

流体的温度必须小于选用电磁阀的标定温度。

电磁阀允许液体粘度一般在20CST以下,大于20CST应注明。

工作压差,管路最高压差在小于0.04MPa时应选用如ZS,2W,ZQDF,ZCM系列等直动式和分步直动式;最低工作压差大于0.04MPa时可选用先导式(压差式)电磁阀;最高工作压差应小于电磁阀的最大标定压力;一般电磁阀都是单向工作,因此要注意是否有反压差,如有安装止回阀。

流体清洁度不高时应在电磁阀前安装过滤器,一般电磁阀对介质要求清洁度要好。

注意流量孔径和接管口径;电磁阀一般只有开关两位控制;条件允许请安装旁路管,便于维修;有水锤现象时要定制电磁阀的开闭时间调节。

注意环境温度对电磁阀的影响

电源电流和消耗功率应根据输出容量选取,电源电压一般允许±10%左右,必须注意交流起动时VA值较高。

二、可靠性

电磁阀分为常闭和常开二种;一般选用常闭型,通电打开,断电关闭;但在开启时间很长关闭时很短时要选用常开型了。

寿命试验,工厂一般属于型式试验项目,确切地说我国还没有电磁阀的专业标准,因此选用电磁阀厂家时慎重。

动作时间很短频率较高时一般选取直动式,大口径选用快速系列。

三、安全性

一般电磁阀不防水,在条件不允许时请选用防水型,工厂可以定做。

电磁阀的最高标定公称压力一定要超过管路内的最高压力,否则使用寿命会缩短或产生其它意外情况。

有腐蚀性液体的应选用全不锈钢型,强腐蚀性流体宜选用塑料王(SLF)电磁阀。

爆炸性环境必须选用相应的防爆产品。

四、经济性

有很多电磁阀可以通用,但在能满足以上三点的基础上应选用最经济的产品。

电磁阀结构原理、选型原则一篇搞定

电磁阀结构原理、选型原则一篇搞定

电磁阀的分类

电磁阀原理上分为三大类:直动式、分步直动式、先导式。而从阀瓣结构和材料上的不同与原理上的区别又分为六个分支小类:直动膜片结构、分步直动膜片结构、先导膜片结构、直动活塞结构、分步直动活塞结构、先导活塞结构。

一:直动式电磁阀

电磁阀结构原理、选型原则一篇搞定

有常闭型和常开型二种。常闭型断电时呈关闭状态,当线圈通电时产生电磁力,使动铁芯克服弹簧力同静铁芯吸合直接开启阀,介质呈通路;当线圈断电时电磁力消失,动铁芯在弹簧力的作用下复位,直接关闭阀口,介质不通。结构简单,动作可靠,在零压差和微真空下正常工作。常开型正好相反。如小于φ6流量通径的电磁阀。

原理:常闭型通电时,电磁线圈产生电磁力把敞开件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把敞开件压在阀座上,阀门敞开。(常开型与此相反)

特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

电磁阀结构原理、选型原则一篇搞定

二、分步直动式电磁阀

电磁阀结构原理、选型原则一篇搞定

该阀采用一次开阀和二次开阀连在一体,主阀和导阀分步使电磁力和压差直接开启主阀口。当线圈通电时,产生电磁力使动铁芯和静铁芯吸合,导阀口开启而导阀口设在主阀口上,且动铁芯与主阀芯连在一起,此时主阀上腔的压力通过导阀口卸荷,在压力差和电磁力的同时作用下使主阀芯向上运动,开启主阀介质流通。当线圈断电时电磁力消失,此时动铁芯在自重和弹簧力的作用下关闭导阀孔,此时介质在平衡孔中进入主阀芯上腔,使上腔压力升高,此时在弹簧复位和压力的作用下关闭主阀,介质断流。结构合理,动作可靠,在零压差时工作也可靠。如:ZQDF,ZS,2W等。(图二是典型结构图)

原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。

特点:在零压差或真空、高压时亦能可动作,但功率较大,要求必须水平安装。

电磁阀结构原理、选型原则一篇搞定

三、间接先导式电磁阀

电磁阀结构原理、选型原则一篇搞定

该系列电磁阀由先导阀和主阀芯联系着形成通道组合而成;常闭型在未通电时,呈关闭状态。当线圈通电时,产生的磁力使动铁芯和静铁芯吸合,导阀口打开,介质流向出口,此时主阀芯上腔压力减少,低于进口侧的压力,形成压差克服弹簧阻力而随之向上运动,达到开启主阀口的目的,介质流通。当线圈断电时,磁力消失,动铁芯在弹簧力作用下复位关闭先导口,此时介质从平衡孔流入,主阀芯上腔压力增大,并在弹簧力的作用下向下运动,关闭主阀口。常开式原理正好相反。

原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在敞开件周围形成上低下高的压差,流体压力推动敞开件向上移动,阀门打开;断电时,弹簧力把先导孔敞开,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动敞开件向下移动,敞开阀门。

特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件。

电磁阀结构原理、选型原则一篇搞定

电磁阀的工作原理及常见故障

电磁阀结构原理、选型原则一篇搞定

电磁阀是用电磁控制的工业设备,是用来控制流体的自动化基础元件,属于执行器;并不限于液压,气动。在我们日常生活中应用十分广泛,首先我们先对电磁阀有个初步的认识,电磁阀是由电磁线圈和磁芯组成,是包含一个或几个孔的阀体。当线圈通电或断电时,磁芯的运转将导致流体通过阀体或被切断,以达到改变流体方向的目。

电磁阀结构原理、选型原则一篇搞定

电磁阀工作原理:电磁阀里有密闭的腔,在不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。这样通过控制电磁铁的电流就控制了机械运动。

电磁阀按原理分为:直动式、分布直动式、先导式三大类;按结构分为膜片式电磁阀和活塞式电磁阀两类。

电磁阀的故障将直接影响到切换阀和调节阀的动作,常见的故障有电磁阀不动作,应从以下四个方面排查:

(1)漏气:漏气会造成空气压力不足,使得强制阀的启闭困难,原因是密封垫片损坏或滑阀磨损而造成几个空腔窜气。在处理切换系统的电磁阀故障时,应选择适当的时机,等该电磁阀处于失电时进行处理,若在一个切换间隙内处理不完,可将切换系统暂停,从容处理。

(2)电磁阀卡住:电磁阀的滑阀套与阀芯的配合间隙很小(小于0.008mm),一般都是单件装配,当有机械杂质带入或润滑油太少时,很容易卡住。处理方法可用钢丝从头部小孔捅入,使其弹回。根本的解决方法是要将电磁阀拆下,取出阀芯及阀芯套,用CCI4清洗,使得阀芯在阀套内动作灵活。拆卸时应注意各部件的装配顺序及外部接线位置,以便重新装配及接线正确,还要检查油雾器喷油孔是否堵塞,润滑油是否足够。

(3)电磁阀接线头松动或线头脱落,电磁阀不得电,可紧固线头。

(4)电磁阀线圈烧坏,可拆下电磁阀的接线,用万用表测量,如果开路,则电磁阀线圈烧坏。原因有线圈受潮,引起绝缘不好而漏磁,造成线圈内电流过大而烧毁,因此要防止雨水进入电磁阀。此外,弹簧过硬,反作用力过大,线圈匝数太少,吸力不够也可使得线圈烧毁。紧急处理时,可将线圈上的手动按钮由正常工作时的“0”位打到“1”位,使得阀打开